IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v70y2014i1p767-787.html
   My bibliography  Save this article

Extreme weather impacts on freight railways in Europe

Author

Listed:
  • Johanna Ludvigsen
  • Ronny Klæboe

Abstract

Four cases are studied in this assessment of how the harsh 2010 winter weather affected rail freight operations in Norway, Sweden, Switzerland and Poland and also of the reactive behaviour rail managers mobilised to reduce the adverse outcomes. The results are utilised in a fifth case assessing the proportion of freight train delays in Finland during 2008–2010 by modelling the odds for freight train delays as a function of changes in met-states on the Finnish network and weather-induced infrastructure damage. The results show that rail operators were totally unprepared to deal with the powerful and cascading effects of three harsh weather elements—long spells of low temperatures, heavy snowfalls and strong winds—which affected them concurrently and shut down large swathes of European rail infrastructure and train operations. Rail traffic disruptions spread to downstream and upstream segments of logistics channels, causing shippers and logistics operators to move freight away from rail to road transfer. As a result, railways lost market share for high-value container cargo, revenues and long-term business prospects for international freight movement. Analyses of measures employed to mitigate the immediate damage show that managers improvised their ways of handling crises rather than drew on a priori contingency, i.e. fight-back programmes and crisis management skills. Modelling the co-variation between extreme weather and freight train delays in Finland during 2008–2010 revealed that 60 % of late arrivals were related to winter weather. Furthermore, the combined effect of temperatures below −7 °C and 10–20 cm changes in snow depth coverage from 1 month to the next explained 62 % of the variation in log odds for freight train delays. Also, it has been shown that changes in the number of days with 10–20 cm snow depth coverage explained 66 % of the variation in late train arrivals, contributing to 626 min or 10.5 additional hours’ delay. Changes in the number of days with snowfalls over 5 mm accounted for 77 % variation in late train arrivals, implying that each additional day with this snowfall could contribute to 19.5 h’ delay. Finally, the combination of increased mean number of days with 5 mm snowfall and temperature below −20 °C explained 79 % of the variation in late arrivals, contributing to 193 min or 3.25 h’ delay. All results were significant (p = 0.00). Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Johanna Ludvigsen & Ronny Klæboe, 2014. "Extreme weather impacts on freight railways in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 767-787, January.
  • Handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:767-787
    DOI: 10.1007/s11069-013-0851-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0851-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0851-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wilson, Martha C., 2007. "The impact of transportation disruptions on supply chain performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(4), pages 295-320, July.
    2. Åke J. Holmgren, 2007. "A Framework for Vulnerability Assessment of Electric Power Systems," Advances in Spatial Science, in: Alan T. Murray & Tony H. Grubesic (ed.), Critical Infrastructure, chapter 3, pages 31-55, Springer.
    3. Yossi Sheffi, 2005. "The Resilient Enterprise: Overcoming Vulnerability for Competitive Advantage," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262693496, December.
    4. Melanie Kappes & Margreth Keiler & Kirsten Elverfeldt & Thomas Glade, 2012. "Challenges of analyzing multi-hazard risk: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1925-1958, November.
    5. James G. March & Zur Shapira, 1987. "Managerial Perspectives on Risk and Risk Taking," Management Science, INFORMS, vol. 33(11), pages 1404-1418, November.
    6. Lai, Kee-hung & Ngai, E. W. T. & Cheng, T. C. E., 2002. "Measures for evaluating supply chain performance in transport logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(6), pages 439-456, November.
    7. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    8. Oke, Adegoke & Gopalakrishnan, Mohan, 2009. "Managing disruptions in supply chains: A case study of a retail supply chain," International Journal of Production Economics, Elsevier, vol. 118(1), pages 168-174, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing-Yun Zou & Xin-Yu Peng & Xin-Xin Zhao & Chun-Ping Chang, 2023. "The impact of extreme weather events on water quality: international evidence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 1-21, January.
    2. Woodburn, Allan, 2019. "Rail network resilience and operational responsiveness during unplanned disruption: A rail freight case study," Journal of Transport Geography, Elsevier, vol. 77(C), pages 59-69.
    3. B. G. Tóth, 2021. "The effect of attacks on the railway network of Hungary," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 567-587, June.
    4. Brazil, William & White, Arthur & Nogal, Maria & Caulfield, Brian & O'Connor, Alan & Morton, Craig, 2017. "Weather and rail delays: Analysis of metropolitan rail in Dublin," Journal of Transport Geography, Elsevier, vol. 59(C), pages 69-76.
    5. Andreas Økland & Nils O. E. Olsson, 2021. "Punctuality development and delay explanation factors on Norwegian railways in the period 2005–2014," Public Transport, Springer, vol. 13(1), pages 127-161, March.
    6. Sonja Szymczak & Frederick Bott & Pierre Babeck & Annett Frick & Benjamin Stöckigt & Kathrin Wagner, 2022. "Estimating the hazard of tree fall along railway lines: a new GIS tool," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2237-2258, July.
    7. Fikar, Christian & Hirsch, Patrick & Posset, Martin & Gronalt, Manfred, 2016. "Impact of transalpine rail network disruptions: A study of the Brenner Pass," Journal of Transport Geography, Elsevier, vol. 54(C), pages 122-131.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    2. Ahmadi-Javid, Amir & Seddighi, Amir Hossein, 2013. "A location-routing problem with disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 63-82.
    3. A. V. Thomas & Biswajit Mahanty, 2021. "Dynamic assessment of control system designs of information shared supply chain network experiencing supplier disruption," Operational Research, Springer, vol. 21(1), pages 425-451, March.
    4. Shao, Xiao-Feng, 2012. "Demand-side reactive strategies for supply disruptions in a multiple-product system," International Journal of Production Economics, Elsevier, vol. 136(1), pages 241-252.
    5. Revilla, Elena & Sáenz, María Jesús, 2014. "Supply chain disruption management: Global convergence vs national specificity," Journal of Business Research, Elsevier, vol. 67(6), pages 1123-1135.
    6. Sarkar, Ashutosh & Mohapatra, Pratap K.J., 2009. "Determining the optimal size of supply base with the consideration of risks of supply disruptions," International Journal of Production Economics, Elsevier, vol. 119(1), pages 122-135, May.
    7. Klibi, Walid & Martel, Alain, 2012. "Modeling approaches for the design of resilient supply networks under disruptions," International Journal of Production Economics, Elsevier, vol. 135(2), pages 882-898.
    8. Bendul, Julia C. & Skorna, Alexander C.H., 2016. "Exploring impact factors of shippers’ risk prevention activities: A European survey in transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 206-223.
    9. Seyyed Mohammad Seyyed Alizadeh Ganji & Mohammad Hayati, 2016. "Identifying and Assessing the Risks in the Supply Chain," Modern Applied Science, Canadian Center of Science and Education, vol. 10(6), pages 1-74, June.
    10. Xiaohong Liu & Liguo Zhou & Yen-Chun Jim Wu, 2015. "Supply Chain Finance in China: Business Innovation and Theory Development," Sustainability, MDPI, vol. 7(11), pages 1-21, November.
    11. Rika Ampuh Hadiguna, 2012. "Decision support framework for risk assessment of sustainable supply chain," International Journal of Logistics Economics and Globalisation, Inderscience Enterprises Ltd, vol. 4(1/2), pages 35-54.
    12. Vilko, Jyri P.P. & Hallikas, Jukka M., 2012. "Risk assessment in multimodal supply chains," International Journal of Production Economics, Elsevier, vol. 140(2), pages 586-595.
    13. Jingfu Huang & Gaoke Wu & Yiju Wang, 2021. "Retailer’s Emergency Ordering Policy When Facing an Impending Supply Disruption," Sustainability, MDPI, vol. 13(13), pages 1-21, June.
    14. Guertler, Benjamin & Spinler, Stefan, 2015. "When does operational risk cause supply chain enterprises to tip? A simulation of intra-organizational dynamics," Omega, Elsevier, vol. 57(PA), pages 54-69.
    15. Yingjie Fan & Frank Schwartz & Stefan Voß & David L. Woodruff, 2017. "Stochastic programming for flexible global supply chain planning," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 601-633, December.
    16. Berle, Øyvind & Asbjørnslett, Bjørn Egil & Rice, James B., 2011. "Formal Vulnerability Assessment of a maritime transportation system," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 696-705.
    17. Hannes Hofmann & Christian Busse & Christoph Bode & Michael Henke, 2014. "Sustainability‐Related Supply Chain Risks: Conceptualization and Management," Business Strategy and the Environment, Wiley Blackwell, vol. 23(3), pages 160-172, March.
    18. Wagner, Stephan M. & Neshat, Nikrouz, 2010. "Assessing the vulnerability of supply chains using graph theory," International Journal of Production Economics, Elsevier, vol. 126(1), pages 121-129, July.
    19. David Simchi-Levi & William Schmidt & Yehua Wei & Peter Yun Zhang & Keith Combs & Yao Ge & Oleg Gusikhin & Michael Sanders & Don Zhang, 2015. "Identifying Risks and Mitigating Disruptions in the Automotive Supply Chain," Interfaces, INFORMS, vol. 45(5), pages 375-390, October.
    20. Margolis, Joshua T. & Sullivan, Kelly M. & Mason, Scott J. & Magagnotti, Mariah, 2018. "A multi-objective optimization model for designing resilient supply chain networks," International Journal of Production Economics, Elsevier, vol. 204(C), pages 174-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:767-787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.