IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v155y2019i1d10.1007_s10584-019-02434-5.html
   My bibliography  Save this article

Global warming to increase flood risk on European railways

Author

Listed:
  • Philip Bubeck

    (University of Potsdam)

  • Lisa Dillenardt

    (University of Potsdam)

  • Lorenzo Alfieri

    (Directorate E – Space, Security and Migration)

  • Luc Feyen

    (Directorate E – Space, Security and Migration)

  • Annegret H. Thieken

    (University of Potsdam)

  • Patric Kellermann

    (University of Potsdam
    GFZ German Research Centre for Geosciences)

Abstract

For effective disaster risk management and adaptation planning, a good understanding of current and projected flood risk is required. Recent advances in quantifying flood risk at the regional and global scale have largely neglected critical infrastructure, or addressed this important sector with insufficient detail. Here, we present the first European-wide assessment of current and future flood risk to railway tracks for different global warming scenarios using an infrastructure-specific damage model. We find that the present risk, measured as expected annual damage, to railway networks in Europe is approx. €581 million per year, with the highest risk relative to the length of the network in North Macedonia, Croatia, Norway, Portugal, and Germany. Based on an ensemble of climate projections for RCP8.5, we show that current risk to railway networks is projected to increase by 255% under a 1.5 °C, by 281% under a 2 °C, and by 310% under a 3 °C warming scenario. The largest increases in risk under a 3 °C scenario are projected for Slovakia, Austria, Slovenia, and Belgium. Our advances in the projection of flood risk to railway infrastructure are important given their criticality, and because losses to public infrastructure are usually not insured or even uninsurable in the private market. To cover the risk increase due to climate change, European member states would need to increase expenditure in transport by €1.22 billion annually under a 3 °C warming scenario without further adaptation. Limiting global warming to the 1.5 °C goal of the Paris Agreement would result in avoided losses of €317 million annually.

Suggested Citation

  • Philip Bubeck & Lisa Dillenardt & Lorenzo Alfieri & Luc Feyen & Annegret H. Thieken & Patric Kellermann, 2019. "Global warming to increase flood risk on European railways," Climatic Change, Springer, vol. 155(1), pages 19-36, July.
  • Handle: RePEc:spr:climat:v:155:y:2019:i:1:d:10.1007_s10584-019-02434-5
    DOI: 10.1007/s10584-019-02434-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02434-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02434-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephane Hallegatte & Colin Green & Robert J. Nicholls & Jan Corfee-Morlot, 2013. "Future flood losses in major coastal cities," Nature Climate Change, Nature, vol. 3(9), pages 802-806, September.
    2. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    3. H. Apel & G. Aronica & H. Kreibich & A. Thieken, 2009. "Flood risk analyses—how detailed do we need to be?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 79-98, April.
    4. Hessel C. Winsemius & Jeroen C. J. H. Aerts & Ludovicus P. H. van Beek & Marc F. P. Bierkens & Arno Bouwman & Brenden Jongman & Jaap C. J. Kwadijk & Willem Ligtvoet & Paul L. Lucas & Detlef P. van Vuu, 2016. "Global drivers of future river flood risk," Nature Climate Change, Nature, vol. 6(4), pages 381-385, April.
    5. Claus Doll & Stefan Klug & Riccardo Enei, 2014. "Large and small numbers: options for quantifying the costs of extremes on transport now and in 40 years," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(1), pages 211-239, May.
    6. Brenden Jongman & Stefan Hochrainer-Stigler & Luc Feyen & Jeroen C. J. H. Aerts & Reinhard Mechler & W. J. Wouter Botzen & Laurens M. Bouwer & Georg Pflug & Rodrigo Rojas & Philip J. Ward, 2014. "Increasing stress on disaster-risk finance due to large floods," Nature Climate Change, Nature, vol. 4(4), pages 264-268, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yvonne Andersson-Sköld & Lina Nordin & Erik Nyberg & Mikael Johannesson, 2021. "A Framework for Identification, Assessment and Prioritization of Climate Change Adaptation Measures for Roads and Railways," IJERPH, MDPI, vol. 18(23), pages 1-26, November.
    2. Muluneh Legesse Edamo & Samuel Dagalo Hatiye & Thomas T. Minda & Tigistu Yisihak Ukumo, 2023. "Flood inundation and risk mapping under climate change scenarios in the lower Bilate catchment, Ethiopia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2199-2226, September.
    3. Rui Zhang & Yanfeng Wang & Jie Lyu & Zhanxiang Sun, 2023. "Uncovering the Hidden Risks: A Bibliometric Investigation of Farmers’ Vulnerability to Climate Change," Agriculture, MDPI, vol. 13(9), pages 1-17, September.
    4. Tianni Wang & Mark Ching-Pong Poo & Adolf K. Y. Ng & Zaili Yang, 2023. "Adapting to the Impacts Posed by Climate Change: Applying the Climate Change Risk Indicator (CCRI) Framework in a Multi-Modal Transport System," Sustainability, MDPI, vol. 15(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    2. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    3. H. Moel & B. Jongman & H. Kreibich & B. Merz & E. Penning-Rowsell & P. Ward, 2015. "Flood risk assessments at different spatial scales," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 865-890, August.
    4. Allan Beltrán & David Maddison & Robert J. R. Elliott, 2018. "Assessing the Economic Benefits of Flood Defenses: A Repeat‐Sales Approach," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2340-2367, November.
    5. Mook Bangalore & Andrew Smith & Ted Veldkamp, 2019. "Exposure to Floods, Climate Change, and Poverty in Vietnam," Economics of Disasters and Climate Change, Springer, vol. 3(1), pages 79-99, April.
    6. Yus Budiyono & Jeroen Aerts & JanJaap Brinkman & Muh Marfai & Philip Ward, 2015. "Flood risk assessment for delta mega-cities: a case study of Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 389-413, January.
    7. Lan Feng & Pan Hu & Haisen Wang & Ming-ming Chen & Jiangang Han, 2022. "Improving City Water Quality through Pollution Reduction with Urban Floodgate Infrastructure and Design Solutions: A Case Study in Wuxi, China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    8. Dayang Wang & Dagang Wang & Chongxun Mo & Yi Du, 2021. "Risk variation of reservoir regulation during flood season based on bivariate statistical approach under climate change: a case study in the Chengbihe reservoir, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1585-1608, September.
    9. Enes Yildirim & Ibrahim Demir, 2019. "An integrated web framework for HAZUS-MH flood loss estimation analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 275-286, October.
    10. Antoine Mandel & Timothy Tiggeloven & Daniel Lincke & Elco Koks & Philip Ward & Jochen Hinkel, 2021. "Risks on global financial stability induced by climate change: the case of flood risks," Climatic Change, Springer, vol. 166(1), pages 1-24, May.
    11. Fabio Cian & Carlo Giupponi & Mattia Marconcini, 2021. "Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2163-2184, April.
    12. Zhiqiang Yin & Yixin Hu & Katie Jenkins & Yi He & Nicole Forstenhäusler & Rachel Warren & Lili Yang & Rhosanna Jenkins & Dabo Guan, 2021. "Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    13. M. Mokrech & A. Kebede & R. Nicholls & F. Wimmer & L. Feyen, 2015. "An integrated approach for assessing flood impacts due to future climate and socio-economic conditions and the scope of adaptation in Europe," Climatic Change, Springer, vol. 128(3), pages 245-260, February.
    14. Weiping Wang & Saini Yang & Jianxi Gao & Fuyu Hu & Wanyi Zhao & H. Eugene Stanley, 2020. "An Integrated Approach for Assessing the Impact of Large‐Scale Future Floods on a Highway Transport System," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1780-1794, September.
    15. Ioannis Kougkoulos & Myriam Merad & Simon J. Cook & Ioannis Andredakis, 2021. "Floods in Provence-Alpes-Côte d'Azur and lessons for French flood risk governance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1959-1980, November.
    16. Paula Freire & Alexandre O. Tavares & Luís Sá & Anabela Oliveira & André B. Fortunato & Pedro P. Santos & Ana Rilo & João L. Gomes & João Rogeiro & Rui Pablo & Pedro J. Pinto, 2016. "A local-scale approach to estuarine flood risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1705-1739, December.
    17. Xiaoyong Li & Wenhui Kuang & Fengyun Sun, 2020. "Identifying Urban Flood Regulation Priority Areas in Beijing Based on an Ecosystem Services Approach," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    18. Hefei Huang & Huijuan Cui & Quansheng Ge, 2021. "Assessment of potential risks induced by increasing extreme precipitation under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2059-2079, September.
    19. Renato Vacondio & Francesca Aureli & Alessia Ferrari & Paolo Mignosa & Alessandro Dal Palù, 2016. "Simulation of the January 2014 flood on the Secchia River using a fast and high-resolution 2D parallel shallow-water numerical scheme," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 103-125, January.
    20. Qiwei Yu & Alexis K. H. Lau & Kang T. Tsang & Jimmy C. H. Fung, 2018. "Human damage assessments of coastal flooding for Hong Kong and the Pearl River Delta due to climate change-related sea level rise in the twenty-first century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1011-1038, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:155:y:2019:i:1:d:10.1007_s10584-019-02434-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.