IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i20p9061-d1770085.html
   My bibliography  Save this article

Multi-Scenario Simulation and Restoration Strategy of Ecological Security Pattern in the Yellow River Delta

Author

Listed:
  • Danning Chen

    (College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China)

  • Weifeng Chen

    (College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China)

  • Xincun Zhu

    (College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China)

  • Shugang Xie

    (College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China)

  • Peiyu Du

    (College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China)

  • Xiaolong Chen

    (College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China)

  • Dong Lv

    (College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China)

Abstract

The Yellow River Delta is one of China’s most ecologically fragile regions, experiencing prolonged pressures from rapid urbanization and ecological degradation. Existing research, however, has predominantly focused on constructing ecological security patterns under single scenarios, with limited systematic multi-scenario comparisons and insufficient statistical support. To address this gap, this study proposes an integrated framework of “land use simulation—multi-scenario ecological security pattern construction—statistical comparative analysis.” Using the PLUS model, three scenarios were constructed—Business-as-Usual (BAU), Priority Urban Development (PUD), and Priority Ecological Protection (PEP)—to simulate land use changes by 2040. Habitat quality assessment, Multi-Scale Pattern Analysis (MSPA), landscape connectivity, and circuit theory were integrated to identify ecological source areas, corridors, and nodes, incorporating a novel hexagonal grid partitioning method. Statistical significance was evaluated using parametric tests (ANOVA, t -test) and non-parametric tests (permutation test, PERMANOVA). Analysis indicated significant differences in ecological security patterns across scenarios. Under the PEP scenario, ecological source areas reached 3580.42 km 2 (12.39% of the total Yellow River Delta), corresponding to a 14.85% increase relative to the BAU scenario and a 32.79% increase relative to the PUD scenario. These gains are primarily attributable to stringent wetland and forestland protection policies, which successfully limited the encroachment of construction land into ecological space. Habitat quality and connectivity markedly improved, resulting in the highest ecosystem stability. By contrast, the PUD scenario experienced an 851.46 km 2 expansion of construction land, resulting in the shrinkage of ecological source areas and intensified fragmentation, consequently increasing ecological security risks. The BAU scenario demonstrated moderate outcomes, with a moderately balanced spatial configuration. In conclusion, this study introduces an ecological restoration strategy of “five zones, one belt, one center, and multiple corridors” based on multi-scenario ecological security patterns. This provides a scientific foundation for ecological restoration and territorial spatial planning in the Yellow River Delta, while the proposed multi-scenario statistical comparison method provides a replicable methodological framework for ecological security pattern research in other delta regions.

Suggested Citation

  • Danning Chen & Weifeng Chen & Xincun Zhu & Shugang Xie & Peiyu Du & Xiaolong Chen & Dong Lv, 2025. "Multi-Scenario Simulation and Restoration Strategy of Ecological Security Pattern in the Yellow River Delta," Sustainability, MDPI, vol. 17(20), pages 1-28, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9061-:d:1770085
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/20/9061/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/20/9061/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Feng & Ye, Yaping & Song, Bowen & Wang, Rusong, 2015. "Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China," Ecological Modelling, Elsevier, vol. 318(C), pages 194-203.
    2. Yunlong Li & Shuping Huang & Xianglun Kong & Mei Han & Min Wang & Hongkuan Hui, 2022. "Ecological Effects of Surface Water Evolution in the Yellow River Delta," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    3. Yi Wang & Long Zhang & Yuhong Song, 2022. "Study on the Construction of the Ecological Security Pattern of the Lancang River Basin (Yunnan Section) Based on InVEST-MSPA-Circuit Theory," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    4. Jinlong Hu & Guo Qing & Yingxue Wang & Sicheng Qiu & Nan Luo, 2024. "Landscape Ecological Security of the Lijiang River Basin in China: Spatiotemporal Evolution and Pattern Optimization," Sustainability, MDPI, vol. 16(13), pages 1-22, July.
    5. Huiyuan Guan & Yongping Bai & Chunyue Zhang, 2022. "Research on Ecosystem Security and Restoration Pattern of Urban Agglomeration in the Yellow River Basin," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    6. Birch, Colin P.D. & Oom, Sander P. & Beecham, Jonathan A., 2007. "Rectangular and hexagonal grids used for observation, experiment and simulation in ecology," Ecological Modelling, Elsevier, vol. 206(3), pages 347-359.
    7. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    8. Yuhan Bai & Jiajia Zhao & Hangrui Shen & Xinyao Li & Bo Wen, 2024. "The Evolution of Forest Landscape Connectivity and Ecological Network Construction: A Case Study of Zhejiang’s Ecological Corridors," Sustainability, MDPI, vol. 16(14), pages 1-24, July.
    9. Hong Yang & Roger J. Flower & Julian R. Thompson, 2012. "Rural factories won't fix Chinese pollution," Nature, Nature, vol. 490(7420), pages 342-343, October.
    10. Jiayu Wang & Tian Chen, 2022. "A Multi-Scenario Land Expansion Simulation Method from Ecosystem Services Perspective of Coastal Urban Agglomeration: A Case Study of GHM-GBA, China," Land, MDPI, vol. 11(11), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingfan Ju & Yan Liu & Jin Yang & Mingshun Xiang & Qing Xiang & Wenkai Hu & Zhengyi Ding, 2023. "Construction of Nature Reserves’ Ecological Security Pattern Based on Landscape Ecological Risk Assessment: A Case Study of Garze Tibetan Autonomous Prefecture, China," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    2. Wenting Zhang & Bo Li, 2021. "Research on an Analytical Framework for Urban Spatial Structural and Functional Optimisation: A Case Study of Beijing City, China," Land, MDPI, vol. 10(1), pages 1-19, January.
    3. Wang, Huan & Zhang, Chao & Yao, Xiaochuang & Yun, Wenju & Ma, Jiani & Gao, Lulu & Li, Pengshan, 2022. "Scenario simulation of the tradeoff between ecological land and farmland in black soil region of Northeast China," Land Use Policy, Elsevier, vol. 114(C).
    4. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    5. Aritta Suwarno & Meine van Noordwijk & Hans-Peter Weikard & Desi Suyamto, 2018. "Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 211-229, February.
    6. Zihan Dong & Haodong Liu & Hua Liu & Yongfu Chen & Xinru Fu & Yang Zhang & Jiajia Xia & Zhiwei Zhang & Qiao Chen, 2025. "Analysis of Habitat Quality Changes in Mountainous Areas Using the PLUS Model and Construction of a Dynamic Restoration Framework for Ecological Security Patterns: A Case Study of Golog Tibetan Autono," Land, MDPI, vol. 14(8), pages 1-23, July.
    7. Sungsoo Yoon & Youngjoo Moon & Jinah Jeong & Chan-Ryul Park & Wanmo Kang, 2021. "A Network-Based Approach for Reducing Pedestrian Exposure to PM 2.5 Induced by Road Traffic in Seoul," Land, MDPI, vol. 10(10), pages 1-14, October.
    8. Zhenzhen Yuan & Weijie Li & Yong Wang & Dayun Zhu & Qiuhong Wang & Yan Liu & Lingyan Zhou, 2022. "Ecosystem Health Evaluation and Ecological Security Patterns Construction Based on VORSD and Circuit Theory: A Case Study in the Three Gorges Reservoir Region in Chongqing, China," IJERPH, MDPI, vol. 20(1), pages 1-19, December.
    9. Hong Shi & Ji Yang & Qijuan Liu & Taohong Li & Ning Chris Chen, 2024. "Impacts of Climate and Land-Use Change on Fraction Vegetation Coverage Based on PLUS-Dimidiate Pixel Model," Sustainability, MDPI, vol. 16(23), pages 1-18, November.
    10. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    11. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    12. Yi Wang & Jun Wang & Beibei Hao & Siyi Zhang & Junwei Ding & Bin He, 2024. "Multi-Scenario Simulation of Future Land Use in the Beijiang River Basin Under Multidimensional Ecological Constraints," Sustainability, MDPI, vol. 16(24), pages 1-24, December.
    13. Boura, Georgia & Ferguson, Neil S., 2024. "Incorporating geographic interdependencies into the resilience assessment of multimodal public transport networks," Journal of Transport Geography, Elsevier, vol. 118(C).
    14. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    15. Ryzhkov, Alexander & Sarzhan, Yuliya, 2020. "Market initiative and central planning: A study of the Moscow bus network," Research in Transportation Economics, Elsevier, vol. 83(C).
    16. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    17. Margaret Gitau & Nathaniel Bailey, 2012. "Multi-Layer Assessment of Land Use and Related Changes for Decision Support in a Coastal Zone Watershed," Land, MDPI, vol. 1(1), pages 1-27, December.
    18. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    19. Charlotte Shade & Peleg Kremer, 2019. "Predicting Land Use Changes in Philadelphia Following Green Infrastructure Policies," Land, MDPI, vol. 8(2), pages 1-19, February.
    20. Wu, Wei & Yeager, Kevin M. & Peterson, Mark S. & Fulford, Richard S., 2015. "Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM)," Ecological Modelling, Elsevier, vol. 303(C), pages 55-69.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9061-:d:1770085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.