IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i1p86-d482432.html
   My bibliography  Save this article

Research on an Analytical Framework for Urban Spatial Structural and Functional Optimisation: A Case Study of Beijing City, China

Author

Listed:
  • Wenting Zhang

    (Faculty of Geographical Science, College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China)

  • Bo Li

    (Faculty of Geographical Science, College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China)

Abstract

A number of severe ecological problems, and the altered structure of urban spaces, are ascribed to rapid urbanisation. Hence, an analytical framework for urban spatial structure and functional optimisation is highly beneficial to balance the contradiction between developing urban areas and protecting their ecosystems. In this paper, the proposed analytical framework included three parts. We first delineated the ecological suitability zones (ESZs) of Beijing City by applying the minimum cumulative resistance (MCR) model. Subsequently, considering various socioeconomic and natural environmental factors, the Markov chain model and future land-use simulation (FLUS) model were utilised to predict the urban spatial structure of Beijing in 2031. Finally, taking the ESZ results as a constraint, three scenarios were designed to optimise the extent of city sprawl: the business as usual (BAU) scenario, ecological security (ES) scenario and ecological priority (EP) scenario. We found that the ESZs contained three zones: an ecological control zone (63%), a restricted development zone (22%), and a concentrated development zone (15%). After comparing the three scenarios, we discovered that the ES scenarios ensured the bottom line in terms of Beijing’s ecological security. Additionally, under the EP scenario, the urban spatial structure and function were further optimised. Our study can provide new ideas and technical support for the reasonable layout of urban spatial structure.

Suggested Citation

  • Wenting Zhang & Bo Li, 2021. "Research on an Analytical Framework for Urban Spatial Structural and Functional Optimisation: A Case Study of Beijing City, China," Land, MDPI, vol. 10(1), pages 1-19, January.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:1:p:86-:d:482432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/1/86/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/1/86/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Feng & Ye, Yaping & Song, Bowen & Wang, Rusong, 2015. "Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China," Ecological Modelling, Elsevier, vol. 318(C), pages 194-203.
    2. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    3. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    4. Huang, Daquan & Huang, Jing & Liu, Tao, 2019. "Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries," Land Use Policy, Elsevier, vol. 82(C), pages 422-435.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Wu & Zexu Han & Auwalu Faisal Koko & Siyuan Zhang & Nan Ding & Jiayang Luo, 2022. "Analyzing the Spatio-Temporal Dynamics of Urban Land Use Expansion and Its Influencing Factors in Zhejiang Province, China," IJERPH, MDPI, vol. 19(24), pages 1-24, December.
    2. Tingting Pan & Yu Zhang & Fengqin Yan & Fenzhen Su, 2023. "Collaborative Optimal Allocation of Urban Land Guide by Land Ecological Suitability: A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area," Land, MDPI, vol. 12(4), pages 1-17, March.
    3. Fan Liang & Jianhong Liu & Mingxing Liu & Jingchao Zeng & Liu Yang & Jianxiong He, 2021. "Scale-Dependent Impacts of Urban Morphology on Commercial Distribution: A Case Study of Xi’an, China," Land, MDPI, vol. 10(2), pages 1-17, February.
    4. Chang Lu & Xiao Qi & Zhongsen Zheng & Kun Jia, 2022. "PLUS-Model Based Multi-Scenario Land Space Simulation of the Lower Yellow River Region and Its Ecological Effects," Sustainability, MDPI, vol. 14(11), pages 1-17, June.
    5. Yichen Zhang & Chuntao Li & Lang Zhang & Jinao Liu & Ruonan Li, 2022. "Spatial Simulation of Land-Use Development of Feixi County, China, Based on Optimized Productive–Living–Ecological Functions," Sustainability, MDPI, vol. 14(10), pages 1-33, May.
    6. Yao, ZHOU & Jiang, CHANG & Shan-shan, FENG, 2022. "Effects of urban growth boundaries on urban spatial structural and ecological functional optimization in the Jining Metropolitan Area, China," Land Use Policy, Elsevier, vol. 117(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Huan & Zhang, Chao & Yao, Xiaochuang & Yun, Wenju & Ma, Jiani & Gao, Lulu & Li, Pengshan, 2022. "Scenario simulation of the tradeoff between ecological land and farmland in black soil region of Northeast China," Land Use Policy, Elsevier, vol. 114(C).
    2. Guoqiang Ma & Qiujie Li & Jinxiu Zhang & Lixun Zhang & Hua Cheng & Zhengping Ju & Guojun Sun, 2022. "Simulation and Analysis of Land-Use Change Based on the PLUS Model in the Fuxian Lake Basin (Yunnan–Guizhou Plateau, China)," Land, MDPI, vol. 12(1), pages 1-18, December.
    3. Xu, Hongtao & Song, Youcheng & Tian, Yi, 2022. "Simulation of land-use pattern evolution in hilly mountainous areas of North China: A case study in Jincheng," Land Use Policy, Elsevier, vol. 112(C).
    4. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    5. Yue Wu & Yue Yang & Weishun Xu & Qiuxiao Chen, 2020. "The Influence of Innovation Resources in Higher Education Institutions on the Development of Sci-Tech Parks’ Enterprises in the Urban Innovative Districts at the Stage of Urbanization Transformation," Land, MDPI, vol. 9(10), pages 1-36, October.
    6. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    7. Aritta Suwarno & Meine van Noordwijk & Hans-Peter Weikard & Desi Suyamto, 2018. "Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 211-229, February.
    8. Yuanyuan Yang & Shuwen Zhang & Jiuchun Yang & Xiaoshi Xing & Dongyan Wang, 2015. "Using a Cellular Automata-Markov Model to Reconstruct Spatial Land-Use Patterns in Zhenlai County, Northeast China," Energies, MDPI, vol. 8(5), pages 1-21, May.
    9. Bonoua Faye & Guoming Du & Edmée Mbaye & Chang’an Liang & Tidiane Sané & Ruhao Xue, 2023. "Assessing the Spatial Agricultural Land Use Transition in Thiès Region, Senegal, and Its Potential Driving Factors," Land, MDPI, vol. 12(4), pages 1-20, March.
    10. Zhenzhen Yuan & Weijie Li & Yong Wang & Dayun Zhu & Qiuhong Wang & Yan Liu & Lingyan Zhou, 2022. "Ecosystem Health Evaluation and Ecological Security Patterns Construction Based on VORSD and Circuit Theory: A Case Study in the Three Gorges Reservoir Region in Chongqing, China," IJERPH, MDPI, vol. 20(1), pages 1-19, December.
    11. Rifat, Shaikh Abdullah Al & Liu, Weibo, 2022. "Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area," Land Use Policy, Elsevier, vol. 114(C).
    12. Jing Yang & Feng Shi & Yizhong Sun & Jie Zhu, 2019. "A Cellular Automata Model Constrained by Spatiotemporal Heterogeneity of the Urban Development Strategy for Simulating Land-use Change: A Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(15), pages 1-19, July.
    13. Changqing Sun & Yulong Bao & Battsengel Vandansambuu & Yuhai Bao, 2022. "Simulation and Prediction of Land Use/Cover Changes Based on CLUE-S and CA-Markov Models: A Case Study of a Typical Pastoral Area in Mongolia," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    14. Yusuyunjiang Mamitimin & Zibibula Simayi & Ayinuer Mamat & Bumairiyemu Maimaiti & Yunfei Ma, 2023. "FLUS Based Modeling of the Urban LULC in Arid and Semi-Arid Region of Northwest China: A Case Study of Urumqi City," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    15. Brian Pickard & Joshua Gray & Ross Meentemeyer, 2017. "Comparing Quantity, Allocation and Configuration Accuracy of Multiple Land Change Models," Land, MDPI, vol. 6(3), pages 1-21, August.
    16. Chasia, Stanley & Olang, Luke O. & Sitoki, Lewis, 2023. "Modelling of land-use/cover change trajectories in a transboundary catchment of the Sio-Malaba-Malakisi Region in East Africa using the CLUE-s model," Ecological Modelling, Elsevier, vol. 476(C).
    17. Xiaoyang Liu & Weihao Shi & Sen Zhang, 2022. "Progress of Research on Urban Growth Boundary and Its Implications in Chinese Studies Based on Bibliometric Analysis," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    18. Rong Guo & Tong Wu & Mengran Liu & Mengshi Huang & Luigi Stendardo & Yutong Zhang, 2019. "The Construction and Optimization of Ecological Security Pattern in the Harbin-Changchun Urban Agglomeration, China," IJERPH, MDPI, vol. 16(7), pages 1-18, April.
    19. Jiyun Li & Yong Zhou & Qing Li & Siqi Yi & Lina Peng, 2022. "Exploring the Effects of Land Use Changes on the Landscape Pattern and Soil Erosion of Western Hubei Province from 2000 to 2020," IJERPH, MDPI, vol. 19(3), pages 1-27, January.
    20. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:1:p:86-:d:482432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.