IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007433.html
   My bibliography  Save this article

Robust deep Gaussian process-based trustworthy fog-haze-caused pollution flashover prediction approach for overhead contact lines

Author

Listed:
  • Wang, Jian
  • Liu, Huiyuan
  • Gao, Shibin
  • Yu, Long
  • Liu, Xingyang
  • Zhang, Dongkai
  • Kou, Lei

Abstract

Due to completely open-air operation, fog-haze has become the main cause of contamination on the insulator surface of overhead contact lines (OCLs), further leading to pollution flashover and a series of serious risk consequences. To perceive the fog-haze-caused pollution flashover (FHPF) risk of OCL insulator, a robust deep Gaussian process (DGP)-based uncertainty-aware trustworthy prediction approach is proposed, incorporating epistemic and aleatoric uncertainties. In particular, aiming at the imbalanced dataset with limited fault samples, the prediction of FHPF risk is cast as a classification problem, and solved by DGP using stochastic gradient Hamiltonian Monte Carlo (SGHMC) inference. The key parameters are identified investigating the influences of fog-haze on insulator surface contamination. Furthermore, the SGHMC sampling-based inference is utilized to efficiently capture the intractable posterior distribution, dealing with uncertainty and enhancing the flexibility of the prediction approach. Finally, extensive experiments on high-speed railway line validate the effectiveness and superior of the proposed approach, compared to other advanced predictive classification methods. In addition, it cannot only capture the prediction uncertainty over a limited number of fault samples, but also achieve favorable prediction performance under unseen noisy environments, ultimately ensuring robust and trustworthy FHPF risk predictions for OCLs.

Suggested Citation

  • Wang, Jian & Liu, Huiyuan & Gao, Shibin & Yu, Long & Liu, Xingyang & Zhang, Dongkai & Kou, Lei, 2024. "Robust deep Gaussian process-based trustworthy fog-haze-caused pollution flashover prediction approach for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007433
    DOI: 10.1016/j.ress.2023.109829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adland, Roar & Jia, Haiying & Lode, Tønnes & Skontorp, Jørgen, 2021. "The value of meteorological data in marine risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Wang, Jian & Gao, Shibin & Yu, Long & Ma, Chaoqun & Zhang, Dongkai & Kou, Lei, 2023. "A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Zhou, Taotao & Han, Te & Droguett, Enrique Lopez, 2022. "Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    4. Wang, Jian & Gao, Shibin & Yu, Long & Zhang, Dongkai & Ding, Chugang & Chen, Ke & Kou, Lei, 2022. "Predicting wind-caused floater intrusion risk for overhead contact lines based on Bayesian neural network with spatiotemporal correlation analysis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Zhou, Xiaoyi & Lu, Pan & Zheng, Zijian & Tolliver, Denver & Keramati, Amin, 2020. "Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    6. Bellè, Andrea & Zeng, Zhiguo & Duval, Carole & Sango, Marc & Barros, Anne, 2022. "Modeling and vulnerability analysis of interdependent railway and power networks: Application to British test systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Zhuang, Jichao & Jia, Minping & Ding, Yifei & Ding, Peng, 2021. "Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Wang, Jian & Gao, Shibin & Yu, Long & Zhang, Dongkai & Xie, Chenlin & Chen, Ke & Kou, Lei, 2023. "Data-driven lightning-related failure risk prediction of overhead contact lines based on Bayesian network with spatiotemporal fragility model," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    10. Bi, Wenzhe & Tian, Li & Li, Chao & Ma, Zhen & Pan, Haiyang, 2023. "Wind-induced failure analysis of a transmission tower-line system with long-term measured data and orientation effect," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    11. Mukherjee, Sayanti & Nateghi, Roshanak & Hastak, Makarand, 2018. "A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 283-305.
    12. Wang, Jian & Gao, Shibin & Yu, Long & Liu, Xingyang & Neri, Ferrante & Zhang, Dongkai & Kou, Lei, 2024. "Uncertainty-aware trustworthy weather-driven failure risk predictor for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    13. Zhou, Di & Zhuang, Xiao & Zuo, Hongfu & Cai, Jing & Zhao, Xufeng & Xiang, Jiawei, 2022. "A model fusion strategy for identifying aircraft risk using CNN and Att-BiLSTM," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Zhang, Tieyao & Shuai, Jian & Shuai, Yi & Hua, Luoyi & Xu, Kui & Xie, Dong & Mei, Yuan, 2023. "Efficient prediction method of triple failure pressure for corroded pipelines under complex loads based on a backpropagation neural network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Edward & Bao, Han & Dinh, Nam, 2024. "Evaluating the reliability of machine-learning-based predictions used in nuclear power plant instrumentation and control systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jian & Gao, Shibin & Yu, Long & Liu, Xingyang & Neri, Ferrante & Zhang, Dongkai & Kou, Lei, 2024. "Uncertainty-aware trustworthy weather-driven failure risk predictor for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Wang, Jian & Gao, Shibin & Yu, Long & Ma, Chaoqun & Zhang, Dongkai & Kou, Lei, 2023. "A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Wang, Jian & Gao, Shibin & Yu, Long & Zhang, Dongkai & Xie, Chenlin & Chen, Ke & Kou, Lei, 2023. "Data-driven lightning-related failure risk prediction of overhead contact lines based on Bayesian network with spatiotemporal fragility model," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Sun, Xiaojun & Lin, Sheng & Feng, Ding & Zhang, Qiang, 2024. "Post-disaster repair optimization method for traction power supply system of electrified railways based on train operation loss," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    5. Gao, Lu & Lu, Pan & Ren, Yihao, 2021. "A deep learning approach for imbalanced crash data in predicting highway-rail grade crossings accidents," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Zhou, Taotao & Zhang, Laibin & Han, Te & Droguett, Enrique Lopez & Mosleh, Ali & Chan, Felix T.S., 2023. "An uncertainty-informed framework for trustworthy fault diagnosis in safety-critical applications," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Zhou, Chengyu & Fang, Xiaolei, 2023. "A convex two-dimensional variable selection method for the root-cause diagnostics of product defects," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Wang, Jian & Gao, Shibin & Yu, Long & Zhang, Dongkai & Ding, Chugang & Chen, Ke & Kou, Lei, 2022. "Predicting wind-caused floater intrusion risk for overhead contact lines based on Bayesian neural network with spatiotemporal correlation analysis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Xue, Gang & Liu, Shifeng & Ren, Long & Gong, Daqing, 2024. "Risk assessment of utility tunnels through risk interaction-based deep learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Tan, Qiong & Fu, Ming & Wang, Zhengxing & Yuan, Hongyong & Sun, Jinhua, 2024. "A real-time early warning classification method for natural gas leakage based on random forest," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    12. Joel Seppälä & Pertti Järventausta, 2024. "Analyzing Supply Reliability Incentive in Pricing Regulation of Electricity Distribution Operators," Energies, MDPI, vol. 17(6), pages 1-17, March.
    13. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    14. Barati, Hojjat & Yazici, Anil & Almotahari, Amirmasoud, 2024. "A methodology for ranking of critical links in transportation networks based on criticality score distributions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    15. Dikshit, Saransh & Dobson, Ian & Alipour, Alice, 2024. "Cascading structural failures of towers in an electric power transmission line due to straight line winds," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    16. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    18. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    19. Diyang, Liu & Shibin, Gao & Xiaoguang, Wei & Jiaming, Luo & Jian, Shi, 2024. "Impactability and susceptibility assessment based on D-S evidence theory for analyzing the risk of fault propagation among catenary components," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    20. Yan, Jianhai & Ye, Zhi-Sheng & He, Shuguang & He, Zhen, 2024. "A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.