IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v218y2022ipas0951832021006220.html
   My bibliography  Save this article

A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components

Author

Listed:
  • Dindar, Serdar
  • Kaewunruen, Sakdirat
  • An, Min

Abstract

There has been a considerable increase in derailment investigations, in particular at railway turnouts (RTs), as the majority of derailments lead to lengthy disruptions to the appropriate rail operation and catastrophic consequences, being potentially severely hazardous to human safety and health, as well as rail equipment. This paper investigates the impact of climates with different features across the US on the derailments to light up a scientific way for understanding importance of climatic impact. To achieve this, official derailment reports over the last five years are examined in detail. By means of geographic segmentation associated with spatial analysis, different exposure levels of various regions have been identified and implemented into a Bayesian hierarchical model using samples by the M–H algorithm. As a result, the paper reaches interesting scientific findings of climate behaviour on turnout-related component failures resulting in derailments. The findings show extreme climate patterns impact considerably the component failures of rail turnouts. Therefore, it is indicated that turnout-related failure estimates on a large-scale region with extreme cold and hot zones could be investigated when the suggested methodology of this paper is considered.

Suggested Citation

  • Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2022. "A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
  • Handle: RePEc:eee:reensy:v:218:y:2022:i:pa:s0951832021006220
    DOI: 10.1016/j.ress.2021.108130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021006220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jintao & Schmid, Felix & Li, Keping & Zheng, Wei, 2021. "A knowledge graph-based approach for exploring railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. Iranitalab, Amirfarrokh & Khattak, Aemal, 2020. "Probabilistic classification of hazardous materials release events in train incidents and cargo tank truck crashes," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    3. Read, G.J.M. & Naweed, A. & Salmon, P.M., 2019. "Complexity on the rails: A systems-based approach to understanding safety management in rail transport," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 352-365.
    4. Catelani, Marcantonio & Ciani, Lorenzo & Guidi, Giulia & Patrizi, Gabriele, 2021. "An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2020. "Bayesian network-based human error reliability assessment of derailments," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    6. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Xinrui & Fan, Shiqi & Lucy, John & Yang, Zaili, 2022. "Risk analysis of cargo theft from freight supply chains using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Song, Bing & Zhang, Zhipeng & Qin, Yong & Liu, Xiang & Hu, Hao, 2022. "Quantitative analysis of freight train derailment severity with structured and unstructured data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    4. Zheng, Shuai & Liu, Yugang & Lin, Yexin & Wang, Qiang & Yang, Hongtai & Chen, Bin, 2022. "Bridging strategy for the disruption of metro considering the reliability of transportation system: Metro and conventional bus network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Wallius, Eetu & Klock, Ana Carolina Tomé & Hamari, Juho, 2022. "Playing it safe: A literature review and research agenda on motivational technologies in transportation safety," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    6. Xie, Shuyi & Huang, Zimeng & Wu, Gang & Luo, Jinheng & Li, Lifeng & Ma, Weifeng & Wang, Bohong, 2024. "Combining precursor and Cloud Leaky noisy-OR logic gate Bayesian network for dynamic probability analysis of major accidents in the oil depots," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Prashant & Pasha, Junayed & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2022. "Development of exact and heuristic optimization methods for safety improvement projects at level crossings under conflicting objectives," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Song, Bing & Zhang, Zhipeng & Qin, Yong & Liu, Xiang & Hu, Hao, 2022. "Quantitative analysis of freight train derailment severity with structured and unstructured data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    4. Shin, Sung-Min & Lee, Sang Hun & Shin, Seung Ki, 2022. "A novel approach for quantitative importance analysis of safety DI&C systems in the nuclear field," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Ji, Chenyi & Su, Xing & Qin, Zhongfu & Nawaz, Ahsan, 2022. "Probability Analysis of Construction Risk based on Noisy-or Gate Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Edward Kozłowski & Anna Borucka & Andrzej Świderski & Przemysław Skoczyński, 2021. "Classification Trees in the Assessment of the Road–Railway Accidents Mortality," Energies, MDPI, vol. 14(12), pages 1-15, June.
    8. Jang, Inseok & Kim, Yochan & Park, Jinkyun, 2021. "Investigating the Effect of Task Complexity on the Occurrence of Human Errors observed in a Nuclear Power Plant Full-Scope Simulator," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    9. Lin, Boliang & Zhao, Yinan, 2021. "Synchronized optimization of EMU train assignment and second-level preventive maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Chelouati, Mohammed & Boussif, Abderraouf & Beugin, Julie & El Koursi, El-Miloudi, 2023. "Graphical safety assurance case using Goal Structuring Notation (GSN) — challenges, opportunities and a framework for autonomous trains," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Zhou, Jian-Lan & Lei, Yi, 2020. "A slim integrated with empirical study and network analysis for human error assessment in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Bugalia, Nikhil & Maemura, Yu & Ozawa, Kazumasa, 2021. "Characteristics of enhanced safety coordination between high-speed rail operators and manufacturers," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Ben Riemersma & Rolf Künneke & Genserik Reniers & Aad Correljé, 2020. "Upholding Safety in Future Energy Systems: The Need for Systemic Risk Assessment," Energies, MDPI, vol. 13(24), pages 1-20, December.
    14. Abreu, Danilo T.M.P. & Maturana, Marcos C. & Droguett, Enrique Lopez & Martins, Marcelo R., 2022. "Human reliability analysis of conventional maritime pilotage operations supported by a prospective model," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    15. Kim, Yochan & Choi, Sun Yeong & Park, Jinkyun & Kim, Jaewhan, 2022. "Empirical study on human error probability of procedure-extraneous behaviors," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    16. Yan, Dongyang & Li, Keping & Zhu, Qiaozhen & Liu, Yanyan, 2023. "A railway accident prevention method based on reinforcement learning – Active preventive strategy by multi-modal data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    17. Lam, C.Y. & Tai, K., 2020. "Network topological approach to modeling accident causations and characteristics: Analysis of railway incidents in Japan," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    18. Zhao, Xian & Dong, Bingbing & Wang, Xiaoyue, 2023. "Reliability analysis of a two-dimensional voting system equipped with protective devices considering triggering failures," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    19. Shin, Sung-Min & Lee, Sang Hun & Shin, Seung Ki & Jang, Inseok & Park, Jinkyun, 2021. "STPA-Based Hazard and Importance Analysis on NPP Safety I&C Systems Focusing on Human–System Interactions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    20. Zhou, Jian-Lan & Tu, Ren-Fang & Xiao, Hai, 2022. "Large-scale group decision-making to facilitate inter-rater reliability of human-factors analysis for the railway system," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:218:y:2022:i:pa:s0951832021006220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.