IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v214y2021ics0951832021002398.html
   My bibliography  Save this article

Investigating the Effect of Task Complexity on the Occurrence of Human Errors observed in a Nuclear Power Plant Full-Scope Simulator

Author

Listed:
  • Jang, Inseok
  • Kim, Yochan
  • Park, Jinkyun

Abstract

The task complexity (TACOM) measure was previously developed to quantify the complexity of the proceduralized tasks performed by nuclear power plant main control room operators, and its suitability has been verified by comparing TACOM scores with two different types of human performance data, response times and subjective workload scores. The full appropriateness of the measure has yet to be sufficiently validated though, because of a current lack of comparisons between TACOM scores and associated human errors. In this regard, the purpose of this study was to further confirm the appropriateness of the TACOM measure by comparing human error data collected from a full-scope simulator of a domestic Korean nuclear power plant with the associated TACOM scores. Results show that the number of human errors increases proportionally with an increase in TACOM score. This result strongly implies that the TACOM measure is suited for use as a tool to estimate the complexity of proceduralized tasks, which would act as a key indicator to identify the vulnerable points most likely to lead to operator performance degradation.

Suggested Citation

  • Jang, Inseok & Kim, Yochan & Park, Jinkyun, 2021. "Investigating the Effect of Task Complexity on the Occurrence of Human Errors observed in a Nuclear Power Plant Full-Scope Simulator," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:reensy:v:214:y:2021:i:c:s0951832021002398
    DOI: 10.1016/j.ress.2021.107704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021002398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    2. Park, Jinkyun, 2014. "Investigating the TACOM measure as a general tool for quantifying the complexity of procedure guided tasks," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 66-75.
    3. Park, Jinkyun & Jung, Wondea, 2007. "A study on the development of a task complexity measure for emergency operating procedures of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1102-1116.
    4. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2020. "Bayesian network-based human error reliability assessment of derailments," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    5. Selvik, Jon T. & Bellamy, Linda J., 2020. "Addressing human error when collecting failure cause information in the oil and gas industry: A review of ISO 14224:2016," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    6. Jinkyun Park, 2009. "The Complexity of Proceduralized Tasks," Springer Series in Reliability Engineering, Springer, number 978-1-84882-791-2, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Niu & Wenbo Liu & Jia Zhang & Mengxuan Liang & Huimin Li & Yaqiong Zhang & Yihang Du, 2023. "A Task Complexity Analysis Method to Study the Emergency Situation under Automated Metro System," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    2. Park, Jooyoung & Boring, Ronald L. & Ulrich, Thomas A. & Lew, Roger & Lee, Sungheon & Park, Bumjun & Kim, Jonghyun, 2022. "A framework to collect human reliability analysis data for nuclear power plants using a simplified simulator and student operators," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zhang, Li & Liu, Xueyang & Ding, Qianqiao & Qin, Zhuomin & ÄŒepin, Marko, 2021. "Analysis of dependencies among performance shaping factors in human reliability analysis based on a system dynamics approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Park, Jinkyun, 2014. "Investigating the TACOM measure as a general tool for quantifying the complexity of procedure guided tasks," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 66-75.
    3. Ham, Dong-Han & Park, Jinkyun & Jung, Wondea, 2012. "Model-based identification and use of task complexity factors of human integrated systems," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 33-47.
    4. Park, Jooyoung & Boring, Ronald L. & Ulrich, Thomas A. & Lew, Roger & Lee, Sungheon & Park, Bumjun & Kim, Jonghyun, 2022. "A framework to collect human reliability analysis data for nuclear power plants using a simplified simulator and student operators," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. Liu, Peng & Li, Zhizhong, 2014. "Comparison of task complexity measures for emergency operating procedures: Convergent validity and predictive validity," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 289-293.
    6. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    7. Ge, Xiangyu & Zhou, Qianxiang & Liu, Zhongqi, 2020. "Assessment of space station on-orbit maintenance task complexity," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    8. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2022. "A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Ji, Chenyi & Su, Xing & Qin, Zhongfu & Nawaz, Ahsan, 2022. "Probability Analysis of Construction Risk based on Noisy-or Gate Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Zhou, Jian-Lan & Lei, Yi, 2020. "A slim integrated with empirical study and network analysis for human error assessment in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    11. Inger Lise Johansen & Marvin Rausand, 2014. "Defining complexity for risk assessment of sociotechnical systems: A conceptual framework," Journal of Risk and Reliability, , vol. 228(3), pages 272-290, June.
    12. Park, Jinkyun & Jung, Wondea, 2008. "A study on the validity of a task complexity measure for emergency operating procedures of nuclear power plants—Comparing task complexity scores with two sets of operator response time data obtained," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 557-566.
    13. Greco, Salvatore F. & Podofillini, Luca & Dang, Vinh N., 2021. "A Bayesian model to treat within-category and crew-to-crew variability in simulator data for Human Reliability Analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    14. Maturana, Marcos Coelho & Martins, Marcelo Ramos & Frutuoso e Melo, Paulo Fernando Ferreira, 2021. "Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 1 — methodology," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    16. Podofillini, Luca & Reer, Bernhard & Dang, Vinh N., 2021. "Analysis of recent operational events involving inappropriate actions: influencing factors and root causes," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 2 — Application," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Kim, Yochan & Choi, Sun Yeong & Park, Jinkyun & Kim, Jaewhan, 2022. "Empirical study on human error probability of procedure-extraneous behaviors," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    19. Park, Jinkyun & Kim, Yochan, 2018. "A novel speech-act coding scheme to visualize the intention of crew communications to cope with simulated off-normal conditions of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 236-246.
    20. Zhou, Jian-Lan & Tu, Ren-Fang & Xiao, Hai, 2022. "Large-scale group decision-making to facilitate inter-rater reliability of human-factors analysis for the railway system," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:214:y:2021:i:c:s0951832021002398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.