IDEAS home Printed from https://ideas.repec.org/a/kap/theord/v86y2019i3d10.1007_s11238-019-09686-8.html
   My bibliography  Save this article

A dynamic game analysis of Internet services with network externalities

Author

Listed:
  • Tatsuhiro Shichijo

    (Osaka Prefecture University)

  • Emiko Fukuda

    (Tokyo Institute of Technology)

Abstract

Internet services, such as review sites, FAQ sites, online auction sites, online flea markets, and social networking services, are essential to our daily lives. Each Internet service aims to promote information exchange among people who share common interests, activities, or goods. Internet service providers aim to have users of their services actively communicate through their services. Without active interaction, the service falls into disuse. In this study, we consider that an Internet service has a network externality as its main feature, and we model user behavior in the Internet service with network externality (ISNE) as a dynamic game. In particular, we model the diffusion process of users of an ISNE as an infinite-horizon extensive-form game of complete information in which: (1) each user can choose whether or not to use the ISNE in her/his turn and (2) the network effect of the ISNE depends on the history of each player’s actions. We then apply Markov perfect equilibrium to analyze how to increase the number of active users. We derive the necessary and sufficient condition under which the state in which every player is an active user is the unique Markov perfect equilibrium outcome. Moreover, we propose an incentive mechanism that enables the number of active users to increase steadily.

Suggested Citation

  • Tatsuhiro Shichijo & Emiko Fukuda, 2019. "A dynamic game analysis of Internet services with network externalities," Theory and Decision, Springer, vol. 86(3), pages 361-388, May.
  • Handle: RePEc:kap:theord:v:86:y:2019:i:3:d:10.1007_s11238-019-09686-8
    DOI: 10.1007/s11238-019-09686-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11238-019-09686-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11238-019-09686-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph Farrell & Garth Saloner, 1985. "Standardization, Compatibility, and Innovation," RAND Journal of Economics, The RAND Corporation, vol. 16(1), pages 70-83, Spring.
    2. Zhang, Yang & Du, Xiaomin, 2017. "Network effects on strategic interactions: A laboratory approach," Journal of Economic Behavior & Organization, Elsevier, vol. 143(C), pages 133-146.
    3. Allouch, Nizar, 2015. "On the private provision of public goods on networks," Journal of Economic Theory, Elsevier, vol. 157(C), pages 527-552.
    4. Coralio Ballester & Antoni Calvó-Armengol & Yves Zenou, 2006. "Who's Who in Networks. Wanted: The Key Player," Econometrica, Econometric Society, vol. 74(5), pages 1403-1417, September.
    5. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    6. Shichijo Tatsuhiro & Nakayama Yuji, 2009. "A Two-Step Subsidy Scheme to Overcome Network Externalities in a Dynamic Game," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 9(1), pages 1-20, February.
    7. Bloch, Francis & Quérou, Nicolas, 2013. "Pricing in social networks," Games and Economic Behavior, Elsevier, vol. 80(C), pages 243-261.
    8. Yann Bramoull? & Rachel Kranton & Martin D'Amours, 2014. "Strategic Interaction and Networks," American Economic Review, American Economic Association, vol. 104(3), pages 898-930, March.
    9. Ozan Candogan & Kostas Bimpikis & Asuman Ozdaglar, 2012. "Optimal Pricing in Networks with Externalities," Operations Research, INFORMS, vol. 60(4), pages 883-905, August.
    10. Ochs, Jack & Park, In-Uck, 2010. "Overcoming the coordination problem: Dynamic formation of networks," Journal of Economic Theory, Elsevier, vol. 145(2), pages 689-720, March.
    11. Belhaj, Mohamed & Bramoullé, Yann & Deroïan, Frédéric, 2014. "Network games under strategic complementarities," Games and Economic Behavior, Elsevier, vol. 88(C), pages 310-319.
    12. David, Paul A, 1985. "Clio and the Economics of QWERTY," American Economic Review, American Economic Association, vol. 75(2), pages 332-337, May.
    13. Gale, Douglas, 1995. "Dynamic Coordination Games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 1-18, January.
    14. Maskin, Eric & Tirole, Jean, 2001. "Markov Perfect Equilibrium: I. Observable Actions," Journal of Economic Theory, Elsevier, vol. 100(2), pages 191-219, October.
    15. Jeffrey Rohlfs, 1974. "A Theory of Interdependent Demand for a Communications Service," Bell Journal of Economics, The RAND Corporation, vol. 5(1), pages 16-37, Spring.
    16. Dou, Wenyu & Ghose, Sanjoy, 2006. "A dynamic nonlinear model of online retail competition using Cusp Catastrophe Theory," Journal of Business Research, Elsevier, vol. 59(7), pages 838-848, July.
    17. Katz, Michael L & Shapiro, Carl, 1985. "Network Externalities, Competition, and Compatibility," American Economic Review, American Economic Association, vol. 75(3), pages 424-440, June.
    18. Aoyagi, Masaki, 2013. "Coordinating adoption decisions under externalities and incomplete information," Games and Economic Behavior, Elsevier, vol. 77(1), pages 77-89.
    19. Heinrich, Torsten, 2015. "A Discontinuity Model of Technological Change: Catastrophe Theory and Network Structure," MPRA Paper 68089, University Library of Munich, Germany.
    20. Brian Arthur, W. & Ermoliev, Yu. M. & Kaniovski, Yu. M., 1987. "Path-dependent processes and the emergence of macro-structure," European Journal of Operational Research, Elsevier, vol. 30(3), pages 294-303, June.
    21. Dosi, Giovanni & Ermoliev, Yuri & Kaniovski, Yuri, 1994. "Generalized urn schemes and technological dynamics," Journal of Mathematical Economics, Elsevier, vol. 23(1), pages 1-19, January.
    22. Bramoulle, Yann & Kranton, Rachel, 2007. "Public goods in networks," Journal of Economic Theory, Elsevier, vol. 135(1), pages 478-494, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jadbabaie, Ali & Kakhbod, Ali, 2019. "Optimal contracting in networks," Journal of Economic Theory, Elsevier, vol. 183(C), pages 1094-1153.
    2. Demange, Gabrielle, 2017. "Optimal targeting strategies in a network under complementarities," Games and Economic Behavior, Elsevier, vol. 105(C), pages 84-103.
    3. Aoyagi, Masaki, 2018. "Bertrand competition under network externalities," Journal of Economic Theory, Elsevier, vol. 178(C), pages 517-550.
    4. Duan, Yongrui & Feng, Yixuan, 2021. "Optimal pricing in social networks considering reference price effect," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    5. Ying‐Ju Chen & Yves Zenou & Junjie Zhou, 2018. "Competitive pricing strategies in social networks," RAND Journal of Economics, RAND Corporation, vol. 49(3), pages 672-705, September.
    6. Belhaj, Mohamed & Deroïan, Frédéric, 2021. "The value of network information: Assortative mixing makes the difference," Games and Economic Behavior, Elsevier, vol. 126(C), pages 428-442.
    7. Chen, Ying-Ju & Zenou, Yves & Zhou, Junjie, 2020. "Network Topology and Market Structure," CEPR Discussion Papers 14495, C.E.P.R. Discussion Papers.
    8. Junjie Zhou & Ying-Ju Chen, 2016. "Targeted Information Release in Social Networks," Operations Research, INFORMS, vol. 64(3), pages 721-735, June.
    9. Ushchev, Philip & Zenou, Yves, 2020. "Social norms in networks," Journal of Economic Theory, Elsevier, vol. 185(C).
    10. Yang Sun & Wei Zhao & Junjie Zhou, 2021. "Structural Interventions in Networks," Papers 2101.12420, arXiv.org, revised Feb 2021.
    11. Michela Chessa & Patrick Loiseau, 2018. "Incentivizing Efficiency in Local Public Good Games and Applications to the Quantification of Personal Data in Networks," GREDEG Working Papers 2018-02, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    12. Parise, Francesca & Ozdaglar, Asuman, 2019. "A variational inequality framework for network games: Existence, uniqueness, convergence and sensitivity analysis," Games and Economic Behavior, Elsevier, vol. 114(C), pages 47-82.
    13. Witt, Ulrich, 1997. ""Lock-in" vs. "critical masses" -- Industrial change under network externalities," International Journal of Industrial Organization, Elsevier, vol. 15(6), pages 753-773, October.
    14. Jeho Lee & Jaeyong Song & Jae-Suk Yang, 2016. "Network structure effects on incumbency advantage," Strategic Management Journal, Wiley Blackwell, vol. 37(8), pages 1632-1648, August.
    15. Bayer, Péter & Herings, P. Jean-Jacques & Peeters, Ronald & Thuijsman, Frank, 2019. "Adaptive learning in weighted network games," Journal of Economic Dynamics and Control, Elsevier, vol. 105(C), pages 250-264.
    16. Kornish, Laura J., 2006. "Technology choice and timing with positive network effects," European Journal of Operational Research, Elsevier, vol. 173(1), pages 268-282, August.
    17. Heinrich, Torsten, 2014. "Standard wars, tied standards, and network externality induced path dependence in the ICT sector," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 309-320.
    18. Emerson Melo, 2018. "A Variational Approach to Network Games," Working Papers 2018.05, Fondazione Eni Enrico Mattei.
    19. Torsten Heinrich, 2018. "A Discontinuity Model of Technological Change: Catastrophe Theory and Network Structure," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 407-425, March.
    20. Allouch, Nizar, 2017. "The cost of segregation in (social) networks," Games and Economic Behavior, Elsevier, vol. 106(C), pages 329-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:86:y:2019:i:3:d:10.1007_s11238-019-09686-8. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.