IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v202y2020ics0951832019314103.html
   My bibliography  Save this article

Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process

Author

Listed:
  • Kaya, Gulsum Kubra
  • Hocaoglu, Mehmet Fatih

Abstract

In complex systems, as in health care, traditional safety management methods have limited capability to understand the system as a whole. The Functional Resonance Analysis Method (FRAM) has been introduced to overcome this challenge. This study applied a semi-quantitative approach to the FRAM on the basis of Monte Carlo simulation to gain an in-depth understanding of the drug administration process and, in turn, to manage performance variability and to support safety management. The contributions of this paper are twofold. Firstly, this study revealed that the semi-quantitative approach to the FRAM facilitates a clear understanding of the critical interactions in the FRAM model. Secondly, the use of the simulation generated a large number of different real-life scenarios to be examined, which is likely to contribute to situational awareness.

Suggested Citation

  • Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832019314103
    DOI: 10.1016/j.ress.2020.106970
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019314103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patriarca, Riccardo & Bergström, Johan & Di Gravio, Giulio, 2017. "Defining the functional resonance analysis space: Combining Abstraction Hierarchy and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 34-46.
    2. Sujan, Mark & Spurgeon, Peter & Cooke, Matthew & Weale, Andy & Debenham, Philip & Cross, Steve, 2015. "The development of safety cases for healthcare services: Practical experiences, opportunities and challenges," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 200-207.
    3. Belmonte, Fabien & Schön, Walter & Heurley, Laurent & Capel, Robert, 2011. "Interdisciplinary safety analysis of complex socio-technological systems based on the functional resonance accident model: An application to railway trafficsupervision," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 237-249.
    4. Teferra, Kirubel & Shields, Michael D. & Hapij, Adam & Daddazio, Raymond P., 2014. "Mapping model validation metrics to subject matter expert scores for model adequacy assessment," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 9-19.
    5. Aven, Terje, 2018. "How the integration of System 1-System 2 thinking and recent risk perspectives can improve risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 237-244.
    6. Terje Aven & Ortwin Renn, 2015. "An Evaluation of the Treatment of Risk and Uncertainties in the IPCC Reports on Climate Change," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 701-712, April.
    7. Di Gravio, Giulio & Mancini, Maurizio & Patriarca, Riccardo & Costantino, Francesco, 2015. "Overall safety performance of the air traffic management system: Indicators and analysis," Journal of Air Transport Management, Elsevier, vol. 44, pages 65-69.
    8. Woltjer, Rogier & Pinska-Chauvin, Ella & Laursen, Tom & Josefsson, Billy, 2015. "Towards understanding work-as-done in air traffic management safety assessment and design," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 115-130.
    9. Gulsum Kubra Kaya & James Ward & John Clarkson, 2019. "A Review of Risk Matrices Used in Acute Hospitals in England," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1060-1070, May.
    10. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    11. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2016. "Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 203-209.
    12. Terje Aven, 2019. "The Call for a Shift from Risk to Resilience: What Does it Mean?," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1196-1203, June.
    13. Patriarca, Riccardo & Falegnami, Andrea & Costantino, Francesco & Bilotta, Federico, 2018. "Resilience engineering for socio-technical risk analysis: Application in neuro-surgery," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 321-335.
    14. Sujan, Mark A. & Embrey, David & Huang, Huayi, 2020. "On the application of Human Reliability Analysis in healthcare: Opportunities and challenges," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Araujo, Matheus Soares & da Silva, Leandro Dias & Sobrinho, Ã lvaro & Cunha, Paulo & Montecchi, Leonardo, 2022. "Reliability analysis of multi-parameter monitoring systems for Intensive Care Units," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Zhou, Zhengshu & Matsubara, Yutaka & Takada, Hiroaki, 2023. "Resilience analysis and design for mobility-as-a-service based on enterprise architecture modeling," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Li, Jue & Wang, Hongwei, 2023. "Modeling and analyzing multiteam coordination task safety risks in socio-technical systems based on FRAM and multiplex network: Application in the construction industry," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Kaya, Gulsum Kubra & Ozturk, Fatih & Sariguzel, Emine Emel, 2021. "System-based risk analysis in a tram operating system: Integrating Monte Carlo simulation with the functional resonance analysis method," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Yu, Yuerong & Liu, Kezhong & Fu, Shanshan & Chen, Jihong, 2024. "Framework for process risk analysis of maritime accidents based on resilience theory: A case study of grounding accidents in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    6. Simsekler, Mecit Can Emre & Rodrigues, Clarence & Qazi, Abroon & Ellahham, Samer & Ozonoff, Al, 2021. "A comparative study of patient and staff safety evaluation using tree-based machine learning algorithms," Reliability Engineering and System Safety, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patriarca, Riccardo & Falegnami, Andrea & Costantino, Francesco & Bilotta, Federico, 2018. "Resilience engineering for socio-technical risk analysis: Application in neuro-surgery," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 321-335.
    2. Patriarca, Riccardo & Bergström, Johan & Di Gravio, Giulio, 2017. "Defining the functional resonance analysis space: Combining Abstraction Hierarchy and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 34-46.
    3. Steen, Riana & Ferreira, Pedro, 2020. "Resilient flood-risk management at the municipal level through the lens of the Functional Resonance Analysis Model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Alessandro Capocchi & Paola Orlandini & Stefano Amelio, 2021. "Hospital risk management at the time of Covid-19: An analysis of the Lombardy Region," MECOSAN, FrancoAngeli Editore, vol. 0(118), pages 97-116.
    5. Liu, Jintao & Schmid, Felix & Zheng, Wei & Zhu, Jiebei, 2019. "Understanding railway operational accidents using network theory," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 218-231.
    6. Li, Jue & Wang, Hongwei, 2023. "Modeling and analyzing multiteam coordination task safety risks in socio-technical systems based on FRAM and multiplex network: Application in the construction industry," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Gulsum Kubra Kaya & James Ward & John Clarkson, 2019. "A Review of Risk Matrices Used in Acute Hospitals in England," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1060-1070, May.
    8. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Hussein Slim & Sylvie Nadeau, 2020. "A Mixed Rough Sets/Fuzzy Logic Approach for Modelling Systemic Performance Variability with FRAM," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
    10. Kaya, Gulsum Kubra & Ozturk, Fatih & Sariguzel, Emine Emel, 2021. "System-based risk analysis in a tram operating system: Integrating Monte Carlo simulation with the functional resonance analysis method," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Patriarca, Riccardo & Simone, Francesco & Di Gravio, Giulio, 2022. "Modelling cyber resilience in a water treatment and distribution system," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Sujan, Mark A. & Embrey, David & Huang, Huayi, 2020. "On the application of Human Reliability Analysis in healthcare: Opportunities and challenges," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    13. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    14. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    15. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    16. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
    18. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    19. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    20. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832019314103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.