IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v215y2021ics0951832021003550.html
   My bibliography  Save this article

System-based risk analysis in a tram operating system: Integrating Monte Carlo simulation with the functional resonance analysis method

Author

Listed:
  • Kaya, Gulsum Kubra
  • Ozturk, Fatih
  • Sariguzel, Emine Emel

Abstract

Safety management in tram systems is considered to be effective, but improvement is still necessary. This study applies the Functional Resonance Analysis Method (FRAM) by integrating Monte Carlo simulations and a criticality matrix to explore how the system-based perspective would enrich the quantified risk-orientated analysis in a tram operating system. The study models the tram operating system, estimates performance variability, identifies critical couplings and assesses risks presented by those couplings. The findings showed that a daily tram operating system runs with a degree of variability, in which tram driver- and pedestrian-related actions are the most variable ones. Performance variability in the system was most often due to the need for responding to unforeseen change. Such variability was usually essential to sustaining the tram system's successful operation. However, the findings also revealed that the tram operating system was exposed to several risks due to uncontrolled variability. The findings indicate that the system-based approach reveals all system interactions, considers aggregated variability and leads to comprehensive risk analysis of the tram operating system under various real-life working conditions.

Suggested Citation

  • Kaya, Gulsum Kubra & Ozturk, Fatih & Sariguzel, Emine Emel, 2021. "System-based risk analysis in a tram operating system: Integrating Monte Carlo simulation with the functional resonance analysis method," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003550
    DOI: 10.1016/j.ress.2021.107835
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021003550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Syed, Zaki & Lawryshyn, Yuri, 2020. "Risk analysis of an underground gas storage facility using a physics-based system performance model and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    2. Di Gravio, Giulio & Mancini, Maurizio & Patriarca, Riccardo & Costantino, Francesco, 2015. "Overall safety performance of the air traffic management system: Indicators and analysis," Journal of Air Transport Management, Elsevier, vol. 44, pages 65-69.
    3. Patriarca, Riccardo & Falegnami, Andrea & Costantino, Francesco & Bilotta, Federico, 2018. "Resilience engineering for socio-technical risk analysis: Application in neuro-surgery," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 321-335.
    4. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Bin & Wang, Yanzhong & Zhu, Yunyi & Liu, Peng & Wu, Yu & Lu, Fengxia, 2024. "Time-variant reliability analysis of angular contact ball bearing considering the coupled effect of rolling contact fatigue damage and wear," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Guo, Yunlong & Jin, Yongxing & Hu, Shenping & Yang, Zaili & Xi, Yongtao & Han, Bing, 2023. "Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Mahdieh Delikhoon & Esmaeil Zarei & Osiris Valdez Banda & Mohammad Faridan & Ehsanollah Habibi, 2022. "Systems Thinking Accident Analysis Models: A Systematic Review for Sustainable Safety Management," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    4. Wang, Yangpeng & Li, Shuxiang & Lee, Kangkuen & Tam, Hwayaw & Qu, Yuanju & Huang, Jingyin & Chu, Xianghua, 2023. "Accident risk tensor-specific covariant model for railway accident risk assessment and prediction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Yeh, Wei-Chang, 2022. "Novel self-adaptive Monte Carlo simulation based on binary-addition-tree algorithm for binary-state network reliability approximation," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Li, Jue & Wang, Hongwei, 2023. "Modeling and analyzing multiteam coordination task safety risks in socio-technical systems based on FRAM and multiplex network: Application in the construction industry," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Wang, Yanzhong & Xie, Bin & E, Shiyuan, 2022. "Adaptive relevance vector machine combined with Markov-chain-based importance sampling for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    2. Li, Jue & Wang, Hongwei, 2023. "Modeling and analyzing multiteam coordination task safety risks in socio-technical systems based on FRAM and multiplex network: Application in the construction industry," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Yin, Yuanbo & Yang, Hao & Duan, Pengfei & Li, Luling & Zio, Enrico & Liu, Cuiwei & Li, Yuxing, 2022. "Improved quantitative risk assessment of a natural gas pipeline considering high-consequence areas," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Senderov, Sergey M. & Vorobev, Sergey V. & Smirnova, Elena M., 2022. "Peak underground gas storage efficiency in reducing the vulnerability of gas supply to consumers in an extensive gas transmission system," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Casado, Ramon Swell Gomes Rodrigues & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2022. "Combining a multidimensional risk evaluation with an implicit enumeration algorithm to tackle the portfolio selection problem of a natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Steen, Riana & Ferreira, Pedro, 2020. "Resilient flood-risk management at the municipal level through the lens of the Functional Resonance Analysis Model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Zalitis, Ivars & Dolgicers, Aleksandrs & Zemite, Laila & Ganter, Sebastian & Kopustinskas, Vytis & Vamanu, Bogdan & Finger, Jörg & Fuggini, Clemente & Bode, Ilmars & Kozadajevs, Jevgenijs & Häring, Iv, 2022. "Mitigation of the impact of disturbances in gas transmission systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    10. Martin Folch-Calvo & Francisco Brocal-Fernández & Cristina González-Gaya & Miguel A. Sebastián, 2020. "Analysis and Characterization of Risk Methodologies Applied to Industrial Parks," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    11. Natalia Iwaszczuk & Ivanna Zapukhliak & Aleksander Iwaszczuk & Oleh Dzoba & Oleksandra Romashko, 2022. "Underground Gas Storage Facilities in Ukraine: Current State and Future Prospects," Energies, MDPI, vol. 15(18), pages 1-34, September.
    12. Hussein Slim & Sylvie Nadeau, 2020. "A Mixed Rough Sets/Fuzzy Logic Approach for Modelling Systemic Performance Variability with FRAM," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
    13. Nogal, M. & Honfi, D., 2019. "Assessment of road traffic resilience assuming stochastic user behaviour," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 72-83.
    14. Barak, Sasan & Dahooei, Jalil Heidary, 2018. "A novel hybrid fuzzy DEA-Fuzzy MADM method for airlines safety evaluation," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 134-149.
    15. Jiansong Wu & Zhuqiang Hu & Jinyue Chen & Zheng Li, 2018. "Risk Assessment of Underground Subway Stations to Fire Disasters Using Bayesian Network," Sustainability, MDPI, vol. 10(10), pages 1-21, October.
    16. Simsekler, Mecit Can Emre & Rodrigues, Clarence & Qazi, Abroon & Ellahham, Samer & Ozonoff, Al, 2021. "A comparative study of patient and staff safety evaluation using tree-based machine learning algorithms," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    17. Liu, Cuiwei & Wang, Yazhen & Li, Xinhong & Li, Yuxing & Khan, Faisal & Cai, Baoping, 2021. "Quantitative assessment of leakage orifices within gas pipelines using a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    18. Hashem Salarzadeh Jenatabadi & Peyman Babashamsi & Datis Khajeheian & Nader Seyyed Amiri, 2016. "Airline Sustainability Modeling: A New Framework with Application of Bayesian Structural Equation Modeling," Sustainability, MDPI, vol. 8(11), pages 1-17, November.
    19. Yeh, Wei-Chang, 2022. "Novel self-adaptive Monte Carlo simulation based on binary-addition-tree algorithm for binary-state network reliability approximation," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    20. Zhou, Zhengshu & Matsubara, Yutaka & Takada, Hiroaki, 2023. "Resilience analysis and design for mobility-as-a-service based on enterprise architecture modeling," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.