IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v225y2022ics0951832022002290.html
   My bibliography  Save this article

Improved quantitative risk assessment of a natural gas pipeline considering high-consequence areas

Author

Listed:
  • Yin, Yuanbo
  • Yang, Hao
  • Duan, Pengfei
  • Li, Luling
  • Zio, Enrico
  • Liu, Cuiwei
  • Li, Yuxing

Abstract

Currently, quantitative risk assessment is often used for pipeline safety analysis. However, the low probability of pipeline failure may produce a false safety evaluation result because high-consequence areas with high population densities cannot be effectively identified. Furthermore, nearly half of the gas leakage accidents in China have occurred in densely populated areas. Therefore, an improved quantitative risk assessment method is proposed. First, we establish two models: (1) a failure probability model based on improved historical failure and disaster derivation probabilities and (2) a risk consequence model considering potential direct and indirect losses based on the probability of disaster evolution. Considering the concept of human rights equality and the social model of “life is first†in China, a method to correct the loss value of life according to population density is proposed, which can effectively avoid the hidden phenomenon of high-consequence areas mentioned above. A pipeline in China is evaluated using this improved method. Compared with traditional evaluation results, the new evaluation method can effectively identify a high-consequence area and obtain more reasonable results. Thus, a pipeline maintenance plan can ensure the interests of enterprises and fully respect the lives of individuals threatened by the potential risk of the pipeline.

Suggested Citation

  • Yin, Yuanbo & Yang, Hao & Duan, Pengfei & Li, Luling & Zio, Enrico & Liu, Cuiwei & Li, Yuxing, 2022. "Improved quantitative risk assessment of a natural gas pipeline considering high-consequence areas," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002290
    DOI: 10.1016/j.ress.2022.108583
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022002290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Yue & Li, Jingfa & Yu, Bo & Zhao, Yanlin & Yao, Jun, 2021. "Fast and accurate prediction of failure pressure of oil and gas defective pipelines using the deep learning model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Yu, Xuchao & Liang, Wei & Zhang, Laibin & Reniers, Genserik & Lu, Linlin, 2018. "Risk assessment of the maintenance process for onshore oil and gas transmission pipelines under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 50-67.
    3. Liu, Aihua & Chen, Ke & Huang, Xiaofei & Li, Didi & Zhang, Xiaochun, 2021. "Dynamic risk assessment model of buried gas pipelines based on system dynamics," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Brito, A.J. & de Almeida, A.T., 2009. "Multi-attribute risk assessment for risk ranking of natural gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 187-198.
    5. Zhang, Hewei & Dong, Shaohua & Ling, Jiatong & Zhang, Laibin & Cheang, Brenda, 2020. "A modified method for the safety factor parameter: The use of big data to improve petroleum pipeline reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Syed, Zaki & Lawryshyn, Yuri, 2020. "Risk analysis of an underground gas storage facility using a physics-based system performance model and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    7. Yu, Weichao & Huang, Weihe & Wen, Kai & Zhang, Jie & Liu, Hongfei & Wang, Kun & Gong, Jing & Qu, Chunxu, 2021. "Subset simulation-based reliability analysis of the corroding natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    9. Dundulis, Gintautas & ŽutautaitÄ—, Inga & Janulionis, Remigijus & UÅ¡puras, Eugenijus & RimkeviÄ ius, Sigitas & Eid, Mohamed, 2016. "Integrated failure probability estimation based on structural integrity analysis and failure data: Natural gas pipeline case," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 195-202.
    10. Liu, Cuiwei & Wang, Yazhen & Li, Xinhong & Li, Yuxing & Khan, Faisal & Cai, Baoping, 2021. "Quantitative assessment of leakage orifices within gas pipelines using a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Medeiros, Cristina Pereira & da Silva, Lucas Borges Leal & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2021. "A new method for managing multidimensional risks in Natural Gas Pipelines based on non-Expected Utility," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    12. Medeiros, C.P. & Alencar, M.H. & de Almeida, A.T., 2017. "Multidimensional risk evaluation of natural gas pipelines based on a multicriteria decision model using visualization tools and statistical tests for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 268-276.
    13. Russo, Paola & Parisi, Fulvio, 2016. "Risk-targeted safety distance of reinforced concrete buildings from natural-gas transmission pipelines," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 57-66.
    14. Wu, Wei-Shing & Yang, Chen-Feng & Chang, Jung-Chuan & Château, Pierre-Alexandre & Chang, Yang-Chi, 2015. "Risk assessment by integrating interpretive structural modeling and Bayesian network, case of offshore pipeline project," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 515-524.
    15. Xiang, W. & Zhou, W., 2021. "Bayesian network model for predicting probability of third-party damage to underground pipelines and learning model parameters from incomplete datasets," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    16. Dimaio, F. & Scapinello, O. & Zio, E. & Ciarapica, C. & Cincotta, S. & Crivellari, A. & Decarli, L. & Larosa, L., 2021. "Accounting for Safety Barriers Degradation in the Risk Assessment of Oil and Gas Systems by Multistate Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Heidary, Roohollah & Groth, Katrina M., 2021. "A hybrid population-based degradation model for pipeline pitting corrosion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Zhang, Tieyao & Shuai, Jian & Shuai, Yi & Hua, Luoyi & Xu, Kui & Xie, Dong & Mei, Yuan, 2023. "Efficient prediction method of triple failure pressure for corroded pipelines under complex loads based on a backpropagation neural network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Xiao, Rui & Zayed, Tarek & Meguid, Mohamed A. & Sushama, Laxmi, 2024. "Improving failure modeling for gas transmission pipelines: A survival analysis and machine learning integrated approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yinuo & Xie, Shuyi & Tian, Zhigang, 2022. "Risk assessment of buried gas pipelines based on improved cloud-variable weight theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Medeiros, Cristina Pereira & da Silva, Lucas Borges Leal & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2021. "A new method for managing multidimensional risks in Natural Gas Pipelines based on non-Expected Utility," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    3. Wang, WuChang & Zhang, Yi & Li, YuXing & Hu, Qihui & Liu, Chengsong & Liu, Cuiwei, 2022. "Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    4. Casado, Ramon Swell Gomes Rodrigues & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2022. "Combining a multidimensional risk evaluation with an implicit enumeration algorithm to tackle the portfolio selection problem of a natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. Chen, Qian & Zuo, Lili & Wu, Changchun & Cao, Yankai & Bu, Yaran & Chen, Feng & Sadiq, Rehan, 2021. "Supply reliability assessment of a gas pipeline network under stochastic demands," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Yang, Yang & Li, Suzhen & Zhang, Pengcheng, 2022. "Data-driven accident consequence assessment on urban gas pipeline network based on machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Amaya-Gómez, Rafael & Schoefs, Franck & Sánchez-Silva, Mauricio & Muñoz, Felipe & Bastidas-Arteaga, Emilio, 2022. "Matching of corroded defects in onshore pipelines based on In-Line Inspections and Voronoi partitions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    8. Xiao, Rui & Zayed, Tarek & Meguid, Mohamed A. & Sushama, Laxmi, 2024. "Improving failure modeling for gas transmission pipelines: A survival analysis and machine learning integrated approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Su, Yue & Li, Jingfa & Yu, Bo & Zhao, Yanlin & Yao, Jun, 2021. "Fast and accurate prediction of failure pressure of oil and gas defective pipelines using the deep learning model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Hassan, Shamsu & Wang, Jin & Kontovas, Christos & Bashir, Musa, 2022. "An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    12. Zhang, Qiongfang & Xu, Nan & Ersoy, Daniel & Liu, Yongming, 2022. "Manifold-based Conditional Bayesian network for aging pipe yield strength estimation with non-destructive measurements," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    13. Wang, Chang & Zheng, Jianqin & Liang, Yongtu & Wang, Bohong & Klemeš, Jiří Jaromír & Zhu, Zhu & Liao, Qi, 2022. "Deeppipe: An intelligent monitoring framework for operating condition of multi-product pipelines," Energy, Elsevier, vol. 261(PB).
    14. Ruiz-Tagle, Andres & Lewis, Austin D. & Schell, Colin A. & Lever, Ernest & Groth, Katrina M., 2022. "BaNTERA: A Bayesian Network for Third-Party Excavation Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    15. Yang, Kai & Hou, Lei & Man, Jianfeng & Yu, Qiaoyan & Li, Yu & Zhang, Xinru & Liu, Jiaquan, 2023. "Supply reliability analysis of natural gas pipeline network based on demand-side economic loss risk," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    16. Dongsheng Guo & Zhaoxue Cui & Cuiwei Liu & Yuxing Li, 2023. "Analysis of the Influencing Factors of the Leak Detection Method Based on the Disturbance-Reflected Signal," Energies, MDPI, vol. 16(2), pages 1-16, January.
    17. Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    18. Aorui Bi & Shuya Huang & Xinguo Sun, 2023. "Risk Assessment of Oil and Gas Pipeline Based on Vague Set-Weighted Set Pair Analysis Method," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    19. Hong, Bingyuan & Shao, Bowen & Guo, Jian & Fu, Jianzhong & Li, Cuicui & Zhu, Baikang, 2023. "Dynamic Bayesian network risk probability evolution for third-party damage of natural gas pipelines," Applied Energy, Elsevier, vol. 333(C).
    20. Na, Kyumin & Yoon, Heonjun & Kim, Jaedong & Kim, Sungjong & Youn, Byeng D., 2023. "PERL: Probabilistic energy-ratio-based localization for boiler tube leaks using descriptors of acoustic emission signals," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.