IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v208y2021ics095183202030819x.html
   My bibliography  Save this article

Dynamic risk assessment model of buried gas pipelines based on system dynamics

Author

Listed:
  • Liu, Aihua
  • Chen, Ke
  • Huang, Xiaofei
  • Li, Didi
  • Zhang, Xiaochun

Abstract

The risks associated with buried gas pipeline are dynamic because of the variable operating environment as well as numerous accident-causing factors. However, most risk analysis studies provide a static overview of the system. This paper proposes a dynamic risk assessment model based on system dynamics (SD) to deal with both the complexity of a given system and changes therein with time, because SD offers unique advantages in revealing the dynamic characteristics of system behavior. For corrosion failure, which is closely related to time, our preliminary results are used to calculate the dynamic failure probability. For the time-independent failure causes, a failure probability calculation model based on the modification factors is proposed. Then, the accident consequences are analyzed according to the evolution process of gas accidents. The SD model for the risk assessment of gas pipelines is constructed by considering failure probability and accident consequences. The failure probability, accident consequences, and individual risk are simulated by considering a natural gas pipeline in Zhuhai, China, as an example. The results show that the dynamic development laws of buried gas pipeline risk are consistent with the actual situation and the proposed model can effectively characterize the temporal and spatial laws of risk evolution.

Suggested Citation

  • Liu, Aihua & Chen, Ke & Huang, Xiaofei & Li, Didi & Zhang, Xiaochun, 2021. "Dynamic risk assessment model of buried gas pipelines based on system dynamics," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:reensy:v:208:y:2021:i:c:s095183202030819x
    DOI: 10.1016/j.ress.2020.107326
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202030819X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davis, P. & Burn, S. & Moglia, M. & Gould, S., 2007. "A physical probabilistic model to predict failure rates in buried PVC pipelines," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1258-1266.
    2. Dundulis, Gintautas & ŽutautaitÄ—, Inga & Janulionis, Remigijus & UÅ¡puras, Eugenijus & RimkeviÄ ius, Sigitas & Eid, Mohamed, 2016. "Integrated failure probability estimation based on structural integrity analysis and failure data: Natural gas pipeline case," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 195-202.
    3. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2012. "Dynamic risk analysis using bow-tie approach," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 36-44.
    4. Chen, Qian & Zuo, Lili & Wu, Changchun & Bu, Yaran & Lu, Yifei & Huang, Yanfei & Chen, Feng, 2020. "Short-term supply reliability assessment of a gas pipeline system under demand variations," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Gong, C. & Zhou, W., 2018. "Importance sampling-based system reliability analysis of corroding pipelines considering multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 199-208.
    6. Ching, Jianye & Leu, Sou-Sen, 2009. "Bayesian updating of reliability of civil infrastructure facilities based on condition-state data and fault-tree model," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1962-1974.
    7. Dann, Markus R. & Maes, Marc A., 2018. "Stochastic corrosion growth modeling for pipelines using mass inspection data," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 245-254.
    8. Zhang, Y. & Weng, W.G., 2020. "Bayesian network model for buried gas pipeline failure analysis caused by corrosion and external interference," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    9. Shalev, Dan M. & Tiran, Joseph, 2007. "Condition-based fault tree analysis (CBFTA): A new method for improved fault tree analysis (FTA), reliability and safety calculations," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1231-1241.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Weichao & Huang, Weihe & Wen, Kai & Zhang, Jie & Liu, Hongfei & Wang, Kun & Gong, Jing & Qu, Chunxu, 2021. "Subset simulation-based reliability analysis of the corroding natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Shan, Xiangying & Yu, Weichao & Hu, Bing & Wen, Kai & Ren, Shipeng & Men, Yang & Li, Mingrui & Gong, Jing & Zheng, Honglong & Hong, Bingyuan, 2024. "A methodology to determine target gas supply reliability of natural gas pipeline system based on cost-benefit analysis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Chen, Yinuo & Xie, Shuyi & Tian, Zhigang, 2022. "Risk assessment of buried gas pipelines based on improved cloud-variable weight theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Yu, Weichao & Huang, Weihe & Wen, Yunhao & Li, Yichen & Liu, Hongfei & Wen, Kai & Gong, Jing & Lu, Yanan, 2021. "An integrated gas supply reliability evaluation method of the large-scale and complex natural gas pipeline network based on demand-side analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    5. Xiao, Rui & Zayed, Tarek & Meguid, Mohamed A. & Sushama, Laxmi, 2024. "Improving failure modeling for gas transmission pipelines: A survival analysis and machine learning integrated approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Hong, Bingyuan & Shao, Bowen & Guo, Jian & Fu, Jianzhong & Li, Cuicui & Zhu, Baikang, 2023. "Dynamic Bayesian network risk probability evolution for third-party damage of natural gas pipelines," Applied Energy, Elsevier, vol. 333(C).
    7. Yılmaz, Emre & German, Brian J. & Pritchett, Amy R., 2023. "Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Xing, Jinduo & Zeng, Zhiguo & Zio, Enrico, 2019. "A framework for dynamic risk assessment with condition monitoring data and inspection data," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Balali, Amirhossein & Valipour, Alireza & Edwards, Rodger & Moehler, Robert, 2021. "Ranking effective risks on human resources threats in natural gas supply projects using ANP-COPRAS method: Case study of Shiraz," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    10. Medeiros, Cristina Pereira & da Silva, Lucas Borges Leal & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2021. "A new method for managing multidimensional risks in Natural Gas Pipelines based on non-Expected Utility," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    11. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2012. "Dynamic risk analysis using bow-tie approach," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 36-44.
    12. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    13. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    14. Hassan, Shamsu & Wang, Jin & Kontovas, Christos & Bashir, Musa, 2022. "An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    15. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    16. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    17. Xu, Gaowei & Azhari, Fae, 2022. "Data-driven optimization of repair schemes and inspection intervals for highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. He, Rui & Zhu, Jingyu & Chen, Guoming & Tian, Zhigang, 2022. "A real-time probabilistic risk assessment method for the petrochemical industry based on data monitoring," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    19. Zhang, Qiongfang & Xu, Nan & Ersoy, Daniel & Liu, Yongming, 2022. "Manifold-based Conditional Bayesian network for aging pipe yield strength estimation with non-destructive measurements," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    20. Tao, Haohan & Jia, Peng & Wang, Xiangyu & Wang, Liquan, 2024. "Reliability analysis of subsea control module based on dynamic Bayesian network and digital twin," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:208:y:2021:i:c:s095183202030819x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.