IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v230y2023ics0951832022004902.html
   My bibliography  Save this article

Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees

Author

Listed:
  • Yılmaz, Emre
  • German, Brian J.
  • Pritchett, Amy R.

Abstract

Fault tree analysis remains a significant alternative for modeling and analyzing reliability and failure modes. Traditionally, the probabilities of the basic events are assumed as point estimates from which the fault tree is used to estimate the probability of the top failure event. This paper instead proposes using this framework for a different purpose: framing the model parameters describing the basic events as random variables, which collectively contribute to the statistics of the estimate of the top failure event. An approach for uncertainty propagation via statistical moments is developed for both static and dynamic gates with specific consideration of the effects of the dependency conditions for different distribution types. Assuming there is a cost to acquire model parameters with reduced uncertainty, this framing can thus be used to identify the best set of model parameters possible within a constrained budget to minimize uncertainty in the resulting estimate of the top failure event. With these models in place, the statistical moments of the top event can be connected to all lower levels, and the statistics in the estimate of the top event can be optimized with a given cost constraint (e.g. allocating resources to reducing uncertainty in the knowledge of basic events to minimize variance in the estimate of the top failure event). This optimization of the uncertainty in the top event is demonstrated with a case study.

Suggested Citation

  • Yılmaz, Emre & German, Brian J. & Pritchett, Amy R., 2023. "Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022004902
    DOI: 10.1016/j.ress.2022.108873
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022004902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longhi, Antonio Eduardo Bier & Pessoa, Artur Alves & Garcia, Pauli Adriano de Almada, 2015. "Multiobjective optimization of strategies for operation and testing of low-demand safety instrumented systems using a genetic algorithm and fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 525-538.
    2. Hu, Lunhu & Kang, Rui & Pan, Xing & Zuo, Dujun, 2020. "Risk assessment of uncertain random system—Level-1 and level-2 joint propagation of uncertainty and probability in fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    3. Ding, Rui & Liu, Zehua & Xu, Jintao & Meng, Fanpeng & Sui, Yang & Men, Xinhong, 2021. "A novel approach for reliability assessment of residual heat removal system for HPR1000 based on failure mode and effect analysis, fault tree analysis, and fuzzy Bayesian network methods," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Takeda, Satoshi & Kitada, Takanori, 2021. "Simple method based on sensitivity coefficient for stochastic uncertainty analysis in probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Durga Rao, K. & Gopika, V. & Sanyasi Rao, V.V.S. & Kushwaha, H.S. & Verma, A.K. & Srividya, A., 2009. "Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 872-883.
    6. Refaul Ferdous & Faisal Khan & Rehan Sadiq & Paul Amyotte & Brian Veitch, 2011. "Fault and Event Tree Analyses for Process Systems Risk Analysis: Uncertainty Handling Formulations," Risk Analysis, John Wiley & Sons, vol. 31(1), pages 86-107, January.
    7. Graves, T.L. & Hamada, M.S. & Klamann, R. & Koehler, A. & Martz, H.F., 2007. "A fully Bayesian approach for combining multi-level information in multi-state fault tree quantification," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1476-1483.
    8. Dutuit, Y. & Innal, F. & Rauzy, A. & Signoret, J.-P., 2008. "Probabilistic assessments in relationship with safety integrity levels by using Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1867-1876.
    9. Bartlett, L.M. & Hurdle, E.E. & Kelly, E.M., 2009. "Integrated system fault diagnostics utilising digraph and fault tree-based approaches," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1107-1115.
    10. Volkanovski, Andrija & ÄŒepin, Marko & Mavko, Borut, 2009. "Application of the fault tree analysis for assessment of power system reliability," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1116-1127.
    11. Simeu-Abazi, Zineb & Lefebvre, Arnaud & Derain, Jean-Pierre, 2011. "A methodology of alarm filtering using dynamic fault tree," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 257-266.
    12. Bibartiu, Otto & Dürr, Frank & Rothermel, Kurt & Ottenwälder, Beate & Grau, Andreas, 2021. "Scalable k-out-of-n models for dependability analysis with Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    13. Dutuit, Yves & Rauzy, Antoine, 2015. "On the extension of Importance Measures to complex components," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 161-168.
    14. Zhou, Siwei & Ye, Luyao & Xiong, Shengwu & Xiang, Jianwen, 2022. "Reliability analysis of dynamic fault trees with Priority-AND gates based on irrelevance coverage model," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    15. Hanif D. Sherali & Jitamitra Desai & Theodore S. Glickman, 2008. "Optimal Allocation of Risk-Reduction Resources in Event Trees," Management Science, INFORMS, vol. 54(7), pages 1313-1321, July.
    16. Merle, G. & Roussel, J.-M. & Lesage, J.-J., 2011. "Algebraic determination of the structure function of Dynamic Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 267-277.
    17. Vaurio, Jussi K., 2010. "Ideas and developments in importance measures and fault-tree techniques for reliability and risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 99-107.
    18. Hurdle, E.E. & Bartlett, L.M. & Andrews, J.D., 2009. "Fault diagnostics of dynamic system operation using a fault tree based method," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1371-1380.
    19. Jung, Sejin & Yoo, Junbeom & Lee, Young-Jun, 2020. "A Software Fault Tree Analysis Technique for Formal Requirement Specifications of Nuclear Reactor Protection Systems," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    20. Hauptmanns, Ulrich, 2010. "A decision-making framework for protecting process plants from flooding based on fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(9), pages 970-980.
    21. Sharp, Alanna & Andrade, Jose & Ruffini, Nicholas, 2019. "Design for reliability for the high reliability fuze," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 54-61.
    22. Matsuoka, Takeshi, 2021. "Procedure to solve mutually dependent Fault Trees (FT with loops)," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    23. McNelles, Phillip & Zeng, Zhao Chang & Renganathan, Guna & Lamarre, Greg & Akl, Yolande & Lu, Lixuan, 2016. "A comparison of Fault Trees and the Dynamic Flowgraph Methodology for the analysis of FPGA-based safety systems Part 1: Reactor trip logic loop reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 135-150.
    24. Zheng, Junjun & Okamura, Hiroyuki & Pang, Taoming & Dohi, Tadashi, 2021. "Availability importance measures of components in smart electric power grid systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    25. Zixian, Liu & Xin, Ni & Yiliu, Liu & Qinglu, Song & Yukun, Wang, 2011. "Gastric esophageal surgery risk analysis with a fault tree and Markov integrated model," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1591-1600.
    26. Chae, Young Ho & Kim, Seung Geun & Seong, Poong Hyun, 2021. "Reliability of the system with loops: Factor graph based approach," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    27. Ching, Jianye & Leu, Sou-Sen, 2009. "Bayesian updating of reliability of civil infrastructure facilities based on condition-state data and fault-tree model," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1962-1974.
    28. Ruijters, Enno & Reijsbergen, Daniël & de Boer, Pieter-Tjerk & Stoelinga, Mariëlle, 2019. "Rare event simulation for dynamic fault trees," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 220-231.
    29. Contini, Sergio & Matuzas, Vaidas, 2011. "New methods to determine the importance measures of initiating and enabling events in fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 775-784.
    30. Shalev, Dan M. & Tiran, Joseph, 2007. "Condition-based fault tree analysis (CBFTA): A new method for improved fault tree analysis (FTA), reliability and safety calculations," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1231-1241.
    31. Cho, Jaehyun & Lee, Sang Hun & Kim, Jaewhan & Park, Seong Kyu, 2022. "Framework to model severe accident management guidelines into Level 2 probabilistic safety assessment of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    32. Wang, Chaonan & Liu, Qiongyang & Xing, Liudong & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2022. "Reliability analysis of smart home sensor systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    33. Zhou, Jianfeng & Reniers, Genserik, 2020. "Probabilistic Petri-net addition enabling decision making depending on situational change: The case of emergency response to fuel tank farm fire," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhiwei & Hong, Dongpao & Cui, Weiwei & Xue, Weikang & Wang, Yao & Zhong, Jilong, 2023. "Resilience evaluation and optimal design for weapon system of systems with dynamic reconfiguration," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Siwei & Ye, Luyao & Xiong, Shengwu & Xiang, Jianwen, 2022. "Reliability analysis of dynamic fault trees with Priority-AND gates based on irrelevance coverage model," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    2. Kai Pan & Hui Liu & Xiaoqing Gou & Rui Huang & Dong Ye & Haining Wang & Adam Glowacz & Jie Kong, 2022. "Towards a Systematic Description of Fault Tree Analysis Studies Using Informetric Mapping," Sustainability, MDPI, vol. 14(18), pages 1-28, September.
    3. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    4. Babaleye, Ahmed O. & Kurt, Rafet Emek & Khan, Faisal, 2019. "Safety analysis of plugging and abandonment of oil and gas wells in uncertain conditions with limited data," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 133-141.
    5. Darwish, Molham & Almouahed, Shaban & de Lamotte, Florent, 2017. "The integration of expert-defined importance factors to enrich Bayesian Fault Tree Analysis," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 81-90.
    6. Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Gascard, Eric & Simeu-Abazi, Zineb, 2018. "Quantitative Analysis of Dynamic Fault Trees by means of Monte Carlo Simulations: Event-Driven Simulation Approach," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 487-504.
    8. Cui, L.X. & Du, Yi-Mu & Sun, C.P., 2023. "On system reliability for time-varying structure," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Liu, Aihua & Chen, Ke & Huang, Xiaofei & Li, Didi & Zhang, Xiaochun, 2021. "Dynamic risk assessment model of buried gas pipelines based on system dynamics," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    10. Matsuoka, Takeshi, 2023. "Reliability analysis of a BWR plant system at startup stage  - analysis by the GO-FLOW methodology with consideration of loop structures and phased mission problem -," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    11. Vaurio, Jussi K., 2011. "Importance measures in risk-informed decision making: Ranking, optimisation and configuration control," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1426-1436.
    12. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Vaurio, Jussi K., 2016. "Importances of components and events in non-coherent systems and risk models," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 117-122.
    14. Zhang, Yimin & Shortle, John & Sherry, Lance, 2015. "Methodology for collision risk assessment of an airspace flow corridor concept," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 444-455.
    15. Chenxi Liu & Nan Chen & Jianing Yang, 2015. "New method for multi-state system reliability analysis based on linear algebraic representation," Journal of Risk and Reliability, , vol. 229(5), pages 469-482, October.
    16. Kowal, Karol, 2022. "Lifetime reliability and availability simulation for the electrical system of HTTR coupled to the electricity-hydrogen cogeneration plant," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    17. Xie, Shuyi & Dong, Shaohua & Chen, Yinuo & Peng, Yujie & Li, Xincai, 2021. "A novel risk evaluation method for fire and explosion accidents in oil depots using bow-tie analysis and risk matrix analysis method based on cloud model theory," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Zhu, Xiaoyan & Boushaba, Mahmoud & Coit, David W. & Benyahia, Azzeddine, 2017. "Reliability and importance measures for m-consecutive-k, l-out-of-n system with non-homogeneous Markov-dependent components," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 1-9.
    19. Sezer, Sukru Ilke & Camliyurt, Gokhan & Aydin, Muhmmet & Akyuz, Emre & Gardoni, Paolo, 2023. "A bow-tie extended D-S evidence-HEART modelling for risk analysis of cargo tank cracks on oil/chemical tanker," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    20. Haiyue Yu & Xiaoyue Wu, 2021. "A method for transformation from dynamic fault tree to binary decision diagram," Journal of Risk and Reliability, , vol. 235(3), pages 416-430, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022004902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.