IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i12p1591-1600.html
   My bibliography  Save this article

Gastric esophageal surgery risk analysis with a fault tree and Markov integrated model

Author

Listed:
  • Zixian, Liu
  • Xin, Ni
  • Yiliu, Liu
  • Qinglu, Song
  • Yukun, Wang

Abstract

Reliability methods have been widely used in risk analysis of medical surgeries. In this study, the authors combine a fault tree with Markov models to assess time independent- and dependent factors together. Dynamics are integrated in the traditional fault tree, and meanwhile the processes of solving Markov are simplified with the modular approach. Continuous time Markov chains are adopted in evaluating the failure probability of a gastric esophageal surgery after categorizing basic events in the fault tree, and a certain time dependent variables, such as failure rate of medical equipment, surgery frequency, and rescue timeliness are involved into risk analysis. A case is studied with data collected from a general hospital, to illustrate the operational process of the proposed method. Results based on the inputs show that taking rescue actions into consideration can reduce the gap between the result of fault tree analysis and the reality. Sensitivity analysis for measuring the impacts of the above time relevant variables is conducted, as well as limitations of the Markov model are discussed.

Suggested Citation

  • Zixian, Liu & Xin, Ni & Yiliu, Liu & Qinglu, Song & Yukun, Wang, 2011. "Gastric esophageal surgery risk analysis with a fault tree and Markov integrated model," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1591-1600.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:12:p:1591-1600
    DOI: 10.1016/j.ress.2011.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011001578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicky J. Welton & A. E. Ades, 2005. "Estimation of Markov Chain Transition Probabilities and Rates from Fully and Partially Observed Data: Uncertainty Propagation, Evidence Synthesis, and Model Calibration," Medical Decision Making, , vol. 25(6), pages 633-645, November.
    2. Frank A. Sonnenberg & J. Robert Beck, 1993. "Markov Models in Medical Decision Making," Medical Decision Making, , vol. 13(4), pages 322-338, December.
    3. Andrew D. MacCormick & Bryan R. Parry, 2006. "Judgment Analysis of Surgeons’ Prioritization of Patients for Elective General Surgery," Medical Decision Making, , vol. 26(3), pages 255-264, May.
    4. Huang, Chin-Yu & Chang, Yung-Ruei, 2007. "An improved decomposition scheme for assessing the reliability of embedded systems by using dynamic fault trees," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1403-1412.
    5. Taleb-Bendiab, A. & England, David & Randles, Martin & Miseldine, Philip & Murphy, Karen, 2006. "A principled approach to the design of healthcare systems: Autonomy vs. governance," Reliability Engineering and System Safety, Elsevier, vol. 91(12), pages 1576-1585.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yılmaz, Emre & German, Brian J. & Pritchett, Amy R., 2023. "Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven M. Shechter & Matthew D. Bailey & Andrew J. Schaefer & Mark S. Roberts, 2008. "The Optimal Time to Initiate HIV Therapy Under Ordered Health States," Operations Research, INFORMS, vol. 56(1), pages 20-33, February.
    2. C. Armero & G. García‐Donato & A. López‐Quílez, 2010. "Bayesian methods in cost–effectiveness studies: objectivity, computation and other relevant aspects," Health Economics, John Wiley & Sons, Ltd., vol. 19(6), pages 629-643, June.
    3. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    4. Marta O. Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    5. Heß, Michael (Ed.) & Schlieter, Hannes (Ed.), 2014. "Modellierung im Gesundheitswesen: Tagungsband des Workshops im Rahmen der Modellierung 2014," ICB Research Reports 57, University Duisburg-Essen, Institute for Computer Science and Business Information Systems (ICB).
    6. repec:jss:jstsof:38:i08 is not listed on IDEAS
    7. Tushar Srivastava & Nicholas R. Latimer & Paul Tappenden, 2021. "Estimation of Transition Probabilities for State-Transition Models: A Review of NICE Appraisals," PharmacoEconomics, Springer, vol. 39(8), pages 869-878, August.
    8. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    9. Pedram Sendi & Huldrych F Günthard & Mathew Simcock & Bruno Ledergerber & Jörg Schüpbach & Manuel Battegay & for the Swiss HIV Cohort Study, 2007. "Cost-Effectiveness of Genotypic Antiretroviral Resistance Testing in HIV-Infected Patients with Treatment Failure," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-8, January.
    10. Villacorta, Pablo J. & Verdegay, José L., 2016. "FuzzyStatProb: An R Package for the Estimation of Fuzzy Stationary Probabilities from a Sequence of Observations of an Unknown Markov Chain," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i08).
    11. Malek B Hannouf & Chander Sehgal & Jeffrey Q Cao & Joseph D Mocanu & Eric Winquist & Gregory S Zaric, 2012. "Cost-Effectiveness of Adding Cetuximab to Platinum-Based Chemotherapy for First-Line Treatment of Recurrent or Metastatic Head and Neck Cancer," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-9, June.
    12. Bärnighausen, Till & Bloom, David E., 2009. ""Conditional scholarships" for HIV/AIDS health workers: Educating and retaining the workforce to provide antiretroviral treatment in sub-Saharan Africa," Social Science & Medicine, Elsevier, vol. 68(3), pages 544-551, February.
    13. Mattias Ekman & Peter Lindgren & Carolin Miltenburger & Genevieve Meier & Julie Locklear & Mary Chatterton, 2012. "Cost Effectiveness of Quetiapine in Patients with Acute Bipolar Depression and in Maintenance Treatment after an Acute Depressive Episode," PharmacoEconomics, Springer, vol. 30(6), pages 513-530, June.
    14. Anna Divoli & Eneida A Mendonça & James A Evans & Andrey Rzhetsky, 2011. "Conflicting Biomedical Assumptions for Mathematical Modeling: The Case of Cancer Metastasis," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-15, October.
    15. de Wit, G.Ardine & Ramsteijn, Paul G & de Charro, Frank Th, 1998. "Economic evaluation of end stage renal disease treatment," Health Policy, Elsevier, vol. 44(3), pages 215-232, June.
    16. Lindhe, Andreas & Norberg, Tommy & Rosén, Lars, 2012. "Approximate dynamic fault tree calculations for modelling water supply risks," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 61-71.
    17. Robert L. Herrick & Steven G. Buchberger & Robert M. Clark & Margaret Kupferle & Regan Murray & Paul Succop, 2012. "A Markov Model To Estimate Salmonella Morbidity, Mortality, Illness Duration, And Cost," Health Economics, John Wiley & Sons, Ltd., vol. 21(10), pages 1169-1182, October.
    18. Afschin Gandjour & Eva-Julia Weyler, 2006. "Cost-effectiveness of referrals to high-volume hospitals: An analysis based on a probabilistic Markov model for hip fracture surgeries," Health Care Management Science, Springer, vol. 9(4), pages 359-369, November.
    19. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    20. Hiral Anil Shah & Tim Baker & Carl Otto Schell & August Kuwawenaruwa & Khamis Awadh & Karima Khalid & Angela Kairu & Vincent Were & Edwine Barasa & Peter Baker & Lorna Guinness, 2023. "Cost Effectiveness of Strategies for Caring for Critically Ill Patients with COVID-19 in Tanzania," PharmacoEconomics - Open, Springer, vol. 7(4), pages 537-552, July.
    21. Gabriel Rogers & Ruth Garside & Stuart Mealing & Martin Pitt & Rob Anderson & Matthew Dyer & Ken Stein & Margaret Somerville, 2008. "Carmustine Implants for the Treatment of Newly Diagnosed High-Grade Gliomas," PharmacoEconomics, Springer, vol. 26(1), pages 33-44, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:12:p:1591-1600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.