IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v258y2025ics0951832025001188.html
   My bibliography  Save this article

A new approach for product reliability prediction by considering the production factory lifecycle information

Author

Listed:
  • Gunjan, Shashi Bhushan
  • Srinivasu, D.S.
  • N, Ramesh Babu

Abstract

Product reliability prediction is essential for OEMs to plan product maintenance and design improvement. Traditional approaches rely on 'product' lifecycle data for reliability prediction, often not capturing the uncertainties in OEMs' decision-making. To address this, the present work focuses on 'factory' lifecycle information in reliability prediction by introducing the concept of 'factory age,' i.e., cumulative interval for the observed factory lifecycle. The failure times for each product, in each factory age interval, were used to estimate the Weibull parameters, creating temporal data. A combination of grey- and support vector machine (SVM)-models, which complement each other in capturing global and local trends, and handling uncertainty from limited temporal data, was proposed to forecast the Weibull parameters accurately in the future factory age interval. The proposed approach was validated on two failure modes in a factory-producing turning centers, using data from the first 11 factory age intervals for model development. Reliability predictions for the last three intervals achieved root mean square errors (RMSEs) of 0.67 % and 1.48 % for failure modes I and II. Comparatively, individual grey (4.37 %, 5.11 %) and SVM (8.03 %, 10.60 %) models yielded higher RMSEs, while other reported models in literature showed in the range of 1.63 %–34.07 %, demonstrating the proposed approach's efficacy.

Suggested Citation

  • Gunjan, Shashi Bhushan & Srinivasu, D.S. & N, Ramesh Babu, 2025. "A new approach for product reliability prediction by considering the production factory lifecycle information," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001188
    DOI: 10.1016/j.ress.2025.110915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Tao, Haohan & Jia, Peng & Wang, Xiangyu & Wang, Liquan, 2024. "Reliability analysis of subsea control module based on dynamic Bayesian network and digital twin," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    3. Zhu, Chun-Yan & Li, Zhen-Ao & Dong, Xiao-Wei & Wang, Ming & Li, Qing-Da, 2024. "Collaborative modeling-based improved moving Kriging approach for low-cycle fatigue life reliability estimation of mechanical structures," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    4. Zhu, Xiaoyan & Jiao, Can & Yuan, Tao, 2019. "Optimal decisions on product reliability, sales and promotion under nonrenewable warranties," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    5. Kim, Heungseob, 2023. "Markov-based reliability model for a mixed redundant system and parallel genetic algorithm with knowledge archives for a redundancy allocation problem," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    6. Gu, Hang-Hang & Wang, Run-Zi & Tang, Min-Jin & Zhang, Xian-Cheng & Tu, Shan-Tung, 2024. "Data-physics-model based fatigue reliability assessment methodology for high-temperature components and its application in steam turbine rotor," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Daniel Z. Levin, 2000. "Organizational Learning and the Transfer of Knowledge: An Investigation of Quality Improvement," Organization Science, INFORMS, vol. 11(6), pages 630-647, December.
    8. Bo Zeng & Xin Ma & Juanjuan Shi, 2020. "Modeling Method of the Grey GM(1,1) Model with Interval Grey Action Quantity and Its Application," Complexity, Hindawi, vol. 2020, pages 1-10, January.
    9. Sabri-Laghaie, Kamyar & Fathi, Mahdi & Zio, Enrico & Mazhar, Maryam, 2022. "A novel reliability monitoring scheme based on the monitoring of manufacturing quality error rates," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Wu, Hao & Xu, Yanwen & Liu, Zheng & Li, Yumeng & Wang, Pingfeng, 2023. "Adaptive machine learning with physics-based simulations for mean time to failure prediction of engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    11. Zeng, Hang & Zhang, Hongmei & Guo, Jiansheng & Ren, Bo & Cui, Lijie & Wu, Jiangnan, 2024. "A novel hybrid STL-transformer-ARIMA architecture for aviation failure events prediction," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    12. Chehade, Abdallah & Hassanieh, Wael & Krivtsov, Vasiliy, 2024. "SeqOAE: Deep sequence-to-sequence orthogonal auto-encoder for time-series forecasting under variable population sizes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    13. Oszczypała, Mateusz & Konwerski, Jakub & Ziółkowski, Jarosław & Małachowski, Jerzy, 2024. "Reliability analysis and redundancy optimization of k-out-of-n systems with random variable k using continuous time Markov chain and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Fan, Xudong & Zhang, Xijin & Yu, Xiong Bill, 2023. "Uncertainty quantification of a deep learning model for failure rate prediction of water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    16. Yılmaz, Emre & German, Brian J. & Pritchett, Amy R., 2023. "Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Jafar-Zanjani, Hamed & Zandieh, Mostafa & Sharifi, Mani, 2022. "Robust and resilient joint periodic maintenance planning and scheduling in a multi-factory network under uncertainty: A case study," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suphon Kumpalavalee & Thanapong Suwanasri & Cattareeya Suwanasri & Rattanakorn Phadungthin, 2025. "Risk Assessment Framework for Power Circuit Breakers Based on Condition, Replacement, and Criticality Indices," Energies, MDPI, vol. 18(13), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dan & Liu, Mingli & Yang, Haoxiang & Si, Shubin, 2024. "A novel importance measure considering multi-constraints for RAP optimization of 1-out-of-n subsystems with mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    2. Li, Zhen-Ao & Li, Qing-Long & Liang, Jia-Hao & Dong, Xiao-Wei & Zhu, Chun-Yan & Wang, Ming, 2025. "Stacking ensemble surrogate modeling method based on decomposed- coordinated strategy for structural low-cycle fatigue life reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    3. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    4. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    5. Salimata Sissoko, 2011. "Working Paper 03-11 - Niveau de décentralisation de la négociation et structure des salaires," Working Papers 1103, Federal Planning Bureau, Belgium.
    6. Korom, Philipp, 2016. "Inherited advantage: The importance of inheritance for private wealth accumulation in Europe," MPIfG Discussion Paper 16/11, Max Planck Institute for the Study of Societies.
    7. Daniele, Vittorio, 2007. "Criminalità e investimenti esteri. Un’analisi per le province italiane [The effect of organized crime on Foreign Investments. An Empirical Analysis for the Italian Provinces]," MPRA Paper 6417, University Library of Munich, Germany.
    8. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    9. Dutta, Anupam & Bouri, Elie & Rothovius, Timo & Uddin, Gazi Salah, 2023. "Climate risk and green investments: New evidence," Energy, Elsevier, vol. 265(C).
    10. Cowling, Marc & Ughetto, Elisa & Lee, Neil, 2018. "The innovation debt penalty: Cost of debt, loan default, and the effects of a public loan guarantee on high-tech firms," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 166-176.
    11. Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    12. Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
    13. Meng, Chang & Ghafoori, Noorulhaq, 2024. "The economic impact of terrorism in South Asia," Socio-Economic Planning Sciences, Elsevier, vol. 96(C).
    14. Halldén, Filip & Hultberg, Anna & Ahmed, Ali & Uddin, Gazi Salah & Yahya, Muhammad & Troster, Victor, 2025. "The role of institutional quality on public renewable energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    15. Peracchi, Franco, 2002. "On estimating conditional quantiles and distribution functions," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 433-447, February.
    16. Jan Fałkowski & Maciej Jakubowski & Paweł Strawiński, 2014. "Returns from income strategies in rural Poland," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 22(1), pages 139-178, January.
    17. Elena Bárcena-Mart�n & Santiago Budr�a & Ana I. Moro-Egido, 2012. "Skill mismatches and wages among European university graduates," Applied Economics Letters, Taylor & Francis Journals, vol. 19(15), pages 1471-1475, October.
    18. Trojanek, Radoslaw & Huderek-Glapska, Sonia, 2018. "Measuring the noise cost of aviation – The association between the Limited Use Area around Warsaw Chopin Airport and property values," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 103-114.
    19. Charlier, Isabelle & Paindaveine, Davy & Saracco, Jérôme, 2015. "Conditional quantile estimation based on optimal quantization: From theory to practice," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 20-39.
    20. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.