Adaptive machine learning with physics-based simulations for mean time to failure prediction of engineering systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2023.109553
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2021. "Time-variant system reliability analysis method for a small failure probability problem," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
- Zhou, Taotao & Han, Te & Droguett, Enrique Lopez, 2022. "Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Bansal, Parth & Zheng, Zhuoyuan & Shao, Chenhui & Li, Jingjing & Banu, Mihaela & Carlson, Blair E & Li, Yumeng, 2022. "Physics-informed machine learning assisted uncertainty quantification for the corrosion of dissimilar material joints," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
- Zhao, Yunfei & Huang, Linan & Smidts, Carol & Zhu, Quanyan, 2020. "Finite-horizon semi-Markov game for time-sensitive attack response and probabilistic risk assessment in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
- Pepper, Nick & Crespo, Luis & Montomoli, Francesco, 2022. "Adaptive learning for reliability analysis using Support Vector Machines," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Zhang, Cai Wen, 2021. "Weibull parameter estimation and reliability analysis with zero-failure data from high-quality products," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
- Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gunjan, Shashi Bhushan & Srinivasu, D.S. & N, Ramesh Babu, 2025. "A new approach for product reliability prediction by considering the production factory lifecycle information," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
- Quinci, Gianluca & Paolacci, Fabrizio & Fragiadakis, Michalis & Bursi, Oreste S., 2025. "A machine learning framework for seismic risk assessment of industrial equipment," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
- Grabill, Nicholas & Wang, Stephanie & Olayinka, Hammed A. & De Alwis, Tharindu P. & Khalil, Yehia F. & Zou, Jian, 2024. "AI-augmented failure modes, effects, and criticality analysis (AI-FMECA) for industrial applications," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Hao, Peng & Tian, Haojun & Yang, Hao & Zhang, Yue & Feng, Shaojun, 2025. "An efficient sequential Kriging model for structure safety lifetime analysis considering uncertain degradation," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
- Jiang, Zhongyi & Zhu, Min & Lu, Lu, 2024. "Fourier-MIONet: Fourier-enhanced multiple-input neural operators for multiphase modeling of geological carbon sequestration," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Sihan & Wang, Xingliang & Pang, Rui & Xu, Bin, 2025. "A novel method for time-dependent small failure probability estimation of slope instability subjected to stochastic seismic excitations," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
- Teng, Da & Feng, Yun-Wen & Chen, Jun-Yu & Liu, Jia-Qi & Lu, Cheng, 2024. "Multi-polynomial chaos Kriging-based adaptive moving strategy for comprehensive reliability analyses," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Ji, Haodong & Lyu, Yuhui & Tian, Zushi & Ye, Hailong, 2025. "Assessment of corrosion probability of steel in mortars using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Liu, Jiaqi & Feng, Yunwen & Lu, Cheng & Fei, Chengwei, 2025. "Operational reliability assessment of complex mechanical systems with multiple failure modes: An adaptive decomposition-synchronous-coordination approach," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Wu, Jinhui & Tao, Yourui & Han, Xu, 2023. "Polynomial chaos expansion approximation for dimension-reduction model-based reliability analysis method and application to industrial robots," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
- Zhan, Hongyou & Xiao, Ning-Cong & Ji, Yuxiang, 2022. "An adaptive parallel learning dependent Kriging model for small failure probability problems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Yue, Ke & Li, Jipu & Deng, Shuhan & Kwoh, Chee Keong & Chen, Zhuyun & Li, Weihua, 2024. "A relationship-aware calibrated prototypical network for fault incremental diagnosis of electric motors without reserved samples," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Wang, Jian & Gao, Shibin & Yu, Long & Liu, Xingyang & Neri, Ferrante & Zhang, Dongkai & Kou, Lei, 2024. "Uncertainty-aware trustworthy weather-driven failure risk predictor for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Yuan, Zixia & Xiong, Guojiang & Fu, Xiaofan & Mohamed, Ali Wagdy, 2023. "Improving fault tolerance in diagnosing power system failures with optimal hierarchical extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
- Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Diao, Xiaoxu & Zhao, Yunfei & Smidts, Carol & Vaddi, Pavan Kumar & Li, Ruixuan & Lei, Hangtian & Chakhchoukh, Yacine & Johnson, Brian & Blanc, Katya Le, 2024. "Dynamic probabilistic risk assessment for electric grid cybersecurity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Zhu, Zuanyu & Cheng, Junsheng & Wang, Ping & Wang, Jian & Kang, Xin & Yang, Yu, 2023. "A novel fault diagnosis framework for rotating machinery with hierarchical multiscale symbolic diversity entropy and robust twin hyperdisk-based tensor machine," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Zhao, Chao & Shen, Weiming, 2022. "Adaptive open set domain generalization network: Learning to diagnose unknown faults under unknown working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Xiang, Shihu & Zhao, Changdong & Hao, Songhua & Li, Kui & Li, Wenhua, 2023. "A reliability evaluation method for electromagnetic relays based on a novel degradation-threshold-shock model with two-sided failure thresholds," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
- Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2024. "A Subdomain uncertainty-guided Kriging method with optimized feasibility metric for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Ruicong Zhang & Yu Bao & Qinle Weng & Zhongtian Li & Yonggang Li, 2024. "Active domain adaptation method for label expansion problem," Journal of Risk and Reliability, , vol. 238(1), pages 3-15, February.
- Rombach, Katharina & Michau, Gabriel & Fink, Olga, 2023. "Controlled generation of unseen faults for Partial and Open-Partial domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Feng, Tingting & Li, Shichao & Guo, Liang & Gao, Hongli & Chen, Tao & Yu, Yaoxiang, 2023. "A degradation-shock dependent competing failure processes based method for remaining useful life prediction of drill bit considering time-shifting sudden failure threshold," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
More about this item
Keywords
Mean time to failure; Systems; Adaptive machine learning model; Physics-based simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004672. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.