IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007536.html
   My bibliography  Save this article

A Subdomain uncertainty-guided Kriging method with optimized feasibility metric for time-dependent reliability analysis

Author

Listed:
  • Wang, Dapeng
  • Qiu, Haobo
  • Gao, Liang
  • Jiang, Chen

Abstract

Active learning strategy combined with single-loop Kriging method has attracted much attention for Time-dependent Reliability Analysis (TRA). Large sample pool across all time instants is required to comprehensively cover the failure surface. Identifying training samples with most existing methods requires assessing the response of the entire sample pool, leading to high time costs. Similarly, to assist in identifying critical sampling regions, evaluating failure probability with a large sample pool in each iteration is also time-consuming. Additionally, higher-order uncertainty information is typically ignored, impairing the sampling efficiency. To address these issues, a Subdomain Uncertainty-guided Kriging (SUK) Method is proposed. Stochastic processes are first equivalently converted to random variables. By simultaneously sampling random variables and time parameter, an equivalent sample pool with significantly reduced size is generated for adaptive sampling. With a concise subdomain uncertainty assessment function, critical sampling region, i.e. sensitive subdomain, is distinguished efficiently. By comprehensively considering both the expectation and standard deviation of feasibility function, a novel Optimized Feasibility Metric (OFM) is then proposed for active learning. The proportion of misclassified samples is analytically deduced as stopping criterion. Finally, comparison results on four examples demonstrate the good performances of the proposed subdomain uncertainty-guided Kriging method.

Suggested Citation

  • Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2024. "A Subdomain uncertainty-guided Kriging method with optimized feasibility metric for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007536
    DOI: 10.1016/j.ress.2023.109839
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.