IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023008049.html
   My bibliography  Save this article

A new adaptive multi-kernel relevance vector regression for structural reliability analysis

Author

Listed:
  • Dong, Manman
  • Cheng, Yongbo
  • Wan, Liangqi

Abstract

Surrogate models have been widely used in structural reliability analysis to improve the computational efficiency and the accuracy of failure probability. Recently, several multi-kernel relevance vector regression (MKRVR) models have been studied to evaluate the failure probability. However, existing multiple kernel functions for relevance vector regression models are fixed choices, which increases the number of calls to the limit state function (LSF) and leads to inaccurate results. To address the problem, this paper presents a new adaptive MKRVR model combined with Monte Carlo simulation (MCS). Firstly, a stepwise kernel selection strategy is developed to adaptively select better-performing kernel functions and eliminate redundant kernel functions for constructing the MKRVR model. Secondly, a new active learning function is proposed by considering the probability of mis-prediction and spatial locations of the existing sampling point to identify the new training sample points. Thirdly, a hybrid efficient stopping criterion is adopted to terminate the learning process automatically. Three benchmark examples and one practical engineering example are introduced to demonstrate the effectiveness of the proposed method. Results show that the proposed method can provide accurate failure probability by less number of calls to the LSF than existing fixed kernel-based methods.

Suggested Citation

  • Dong, Manman & Cheng, Yongbo & Wan, Liangqi, 2024. "A new adaptive multi-kernel relevance vector regression for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023008049
    DOI: 10.1016/j.ress.2023.109890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023008049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023008049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.