IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v258y2025ics0951832025000985.html
   My bibliography  Save this article

Advancing stochastic modeling for nonlinear problems: Leveraging the transformation law of probability density

Author

Listed:
  • Saifi, Qais
  • Wu, Huapeng
  • Brace, William

Abstract

In engineering, uncertainties pervade product lifecycles, presenting significant challenges to design reliability and safety, particularly in safety-sensitive industries such as nuclear. Stochastic simulations, leveraging Monte Carlo Sampling, machine learning, and parallel computing, are indispensable for addressing these uncertainties. However, they often overlook the direct influence of prediction models on predicted probability distributions, compromising both efficiency and accuracy. This paper thoroughly investigates the impact of prediction models on predicted probability distributions, presenting a novel mathematical framework to establish the transformation law of probability density. Additionally, we develop the Finite Cell Weight Variation method based on this transformation law. The proposed method seamlessly integrates prediction models into state probability predictions, enhancing reliability assessments while preserving high levels of accuracy and computational efficiency. We illustrate the method's effectiveness with practical examples and validation using Latin Hypercube Sampling (LHC), where several input variables are statistically determined. Our estimation of the probability of the predicted state closely aligns with results obtained using LHC. Furthermore, we explore the implications of our findings and outline future directions in stochastic simulations aimed at strengthening reliability assessments.

Suggested Citation

  • Saifi, Qais & Wu, Huapeng & Brace, William, 2025. "Advancing stochastic modeling for nonlinear problems: Leveraging the transformation law of probability density," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025000985
    DOI: 10.1016/j.ress.2025.110895
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110895?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Xu & Wan, Zhiqiang & Chen, Jianbing, 2023. "Parallel assessment of the tropical cyclone wind hazard at multiple locations using the probability density evolution method integrated with the change of probability measure," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Dong, Manman & Cheng, Yongbo & Wan, Liangqi, 2024. "A new adaptive multi-kernel relevance vector regression for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Zhu, Chun-Yan & Li, Zhen-Ao & Dong, Xiao-Wei & Wang, Ming & Li, Qing-Da, 2024. "Collaborative modeling-based improved moving Kriging approach for low-cycle fatigue life reliability estimation of mechanical structures," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    4. Chen, Zequan & He, Jialong & Li, Guofa & Yang, Zhaojun & Wang, Tianzhe & Du, Xuejiao, 2024. "Fast convergence strategy for adaptive structural reliability analysis based on kriging believer criterion and importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Di Maio, Francesco & Pettorossi, Chiara & Zio, Enrico, 2023. "Entropy-driven Monte Carlo simulation method for approximating the survival signature of complex infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Francesco Di Maio & Chiara Pettorossi & Enrico Zio, 2023. "Entropy-driven Monte Carlo simulation method for approximating the survival signature of complex infrastructures," Post-Print hal-04103855, HAL.
    7. Takeda, Satoshi & Kitada, Takanori, 2023. "Importance measure evaluation based on sensitivity coefficient for probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Xu, Zidong & Wang, Hao & Zhao, Kaiyong & Zhang, Han & Liu, Yun & Lin, Yuxuan, 2024. "Evolutionary probability density reconstruction of stochastic dynamic responses based on physics-aided deep learning," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    9. Jung, WoongHee & Taflanidis, Alexandros A. & Kyprioti, Aikaterini P. & Zhang, Jize, 2024. "Adaptive multi-fidelity Monte Carlo for real-time probabilistic storm surge predictions," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    10. Li, Wenxiong & Geng, Rong & Chen, Suiyin, 2024. "CSP-free adaptive Kriging surrogate model method for reliability analysis with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Mi, Jinhua & Niazi, Sajawal Gul, 2023. "AGP-MCS+D: An active learning reliability analysis method combining dependent Gaussian process and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    13. Yeh, Wei-Chang, 2022. "Novel self-adaptive Monte Carlo simulation based on binary-addition-tree algorithm for binary-state network reliability approximation," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Castellon, Dario Fernandez & Fenerci, Aksel & Petersen, Øyvind Wiig & Øiseth, Ole, 2023. "Full long-term buffeting analysis of suspension bridges using Gaussian process surrogate modelling and importance sampling Monte Carlo simulations," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Wu, Jiawei & Wan, Liangqi, 2024. "Reliability sensitivity analysis for RBSMC: A high-efficiency multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Sihan & Wang, Xingliang & Pang, Rui & Xu, Bin, 2025. "A novel method for time-dependent small failure probability estimation of slope instability subjected to stochastic seismic excitations," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    2. Chu, Xiaolei & Wang, Ziqi, 2025. "Maximum entropy-based modeling of community-level hazard responses for civil infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    3. Jiang, Fengyuan & Dong, Sheng, 2025. "Development of a CNN-based integrated surrogate model in evaluating the damage of buried pipeline under impact loads, considering the soil spatial variability," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    4. Da, Gaofeng & Zhang, Xin & He, Zhenwen & Ding, Weiyong, 2025. "Estimating the all-terminal signatures for networks by using deep neural network," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    5. Ahmed, Shoaib & Li, Tie & Zhou, Xin Yi & Yi, Ping & Chen, Run, 2025. "Quantifying the environmental footprints of biofuels for sustainable passenger ship operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    6. Wu, Jiawei & Wan, Liangqi, 2024. "Reliability sensitivity analysis for RBSMC: A high-efficiency multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Chen, Zhenzhong & Huang, Dongyu & Li, Xiaoke & Qiu, Guiming & Zhao, Pengcheng, 2024. "A reliability analysis method based on the intersection area division of hypersphere and paraboloid," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    8. Futalef, Juan-Pablo & Di Maio, Francesco & Zio, Enrico, 2025. "A dynamic importance function for accidental scenarios generation by RESTART in the computational risk assessment of cyber-physical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    9. Zhang, Tongzhou & Hu, Weifei & Zhao, Feng & Yan, Jiquan & Tang, Ning & Lee, Ikjin & Tan, Jianrong, 2025. "Long-term extreme response evaluation of stochastic models using adaptive stochastic importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    10. He, Wanxin & Wang, Yiyuan & Li, Gang & Zhou, Jinhang, 2024. "A novel maximum entropy method based on the B-spline theory and the low-discrepancy sequence for complex probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Bai, Guo-Peng & Er, Guo-Kang & Iu, Vai Pan, 2024. "A novel stochastic approach to investigate the probabilistic characteristics of the ship roll system with sinusoidal restoring force," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    12. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Das, Sourav & Tesfamariam, Solomon, 2024. "Reliability assessment of stochastic dynamical systems using physics informed neural network based PDEM," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Yeh, Wei-Chang & Tan, Shi-Yi & Zhu, Wenbo & Huang, Chia-Ling & Yang, Guang-yi, 2022. "Novel binary addition tree algorithm (BAT) for calculating the direct lower-bound of the highly reliable binary-state network reliability," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    15. Wu, Xiaomin & Lu, Zhenzhou, 2025. "Efficient global reliability sensitivity method by combining dimensional reduction integral with stochastic collocation," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    16. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. Aven, Terje & Rios Insua, David & Soyer, Refik & Zhu, Xiaoyan & Zio, Enrico, 2025. "Fifty years of reliability in operations research," European Journal of Operational Research, Elsevier, vol. 324(2), pages 361-381.
    18. Hao, Zhifeng & Yeh, Wei-Chang, 2025. "GE-MBAT: An efficient algorithm for reliability assessment in multi-state flow networks," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    19. Wan, Liangqi & Wei, Yumeng & Zhang, Qiaoke & Liu, Lei & Chen, Yuejian, 2025. "A new multiple stochastic Kriging model for active learning surrogate-assisted reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    20. Qiao, Yidan & Gao, Xinwei & Ma, Lin & Chen, Dengkai, 2024. "Dynamic human error risk assessment of group decision-making in extreme cooperative scenario," Reliability Engineering and System Safety, Elsevier, vol. 249(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025000985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.