IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023008232.html
   My bibliography  Save this article

A novel maximum entropy method based on the B-spline theory and the low-discrepancy sequence for complex probability distribution reconstruction

Author

Listed:
  • He, Wanxin
  • Wang, Yiyuan
  • Li, Gang
  • Zhou, Jinhang

Abstract

The maximum entropy method (MEM) is a powerful tool for the recovery of unknown probability density functions (PDF) and has growing popularity in the reliability analysis community. However, MEM may be inaccurate for PDFs with a complex shape (e. g. multiple modals or a long tail), influencing the accuracy of the reliability analysis greatly. To overcome this deficiency, this study proposes a novel MEM paradigm based on the B-spline theory and the low-discrepancy sequence. Firstly, to enhance the performance of MEM for complex PDFs, the B-spline functions are used to construct the MEM PDF. Correspondingly, the iteration formulation is derived for the undetermined parameter estimation of the B-spline-based MEM PDF based on the closed solution for minimizing the Kullback-Leibler divergence. Then, we adopt the low-discrepancy sequence to calculate the objective function of minimizing the Kullback-Leibler divergence efficiently. Compared with MEM and other moment-based reliability analysis methods, the proposed method does not require the statistical moments, and integrates the advantages of the B-spline theory and MEM. To illustrate the benefits of our method, five examples are analyzed and compared with some classical reliability analysis methods.

Suggested Citation

  • He, Wanxin & Wang, Yiyuan & Li, Gang & Zhou, Jinhang, 2024. "A novel maximum entropy method based on the B-spline theory and the low-discrepancy sequence for complex probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023008232
    DOI: 10.1016/j.ress.2023.109909
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023008232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023008232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.