IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v254y2025ipbs095183202400680x.html
   My bibliography  Save this article

Distribution reconstruction and reliability assessment of complex LSFs via an adaptive Non-parametric Density Estimation Method

Author

Listed:
  • Yu, Quanfu
  • Xu, Jun

Abstract

Complex limit state functions (LSFs), often characterized by strong nonlinearity, non-smoothness, or discontinuity, pose challenges for structural reliability analysis in engineering practices. Conventional methods for uncertainty propagation and reliability assessment may struggle to handle these issues effectively. This paper introduces a novel approach to adaptively reconstruct the unknown distributions of complex LSFs. The Non-parametric Density Estimation Method based on Harmonic Transform (NDEM-HT) is employed as the tool for this purpose. An adaptive strategy is then proposed to determine the number of harmonic moments required in NDEM-HT for achieving high accuracy. Specifically, the Adaptive Kernel Density Estimation (AKDE) method is also adopted to provide an initial estimation of the rough distribution. Subsequently, the optimal number of harmonic moments is determined by minimizing the relative entropy between the distributions obtained by AKDE and NDEM-HT. The efficacy of the proposed method is demonstrated through five numerical examples, considering various types of complex LSFs. Comparative results are also provided employing MCS along with both conventional and state-of-the-art methods.

Suggested Citation

  • Yu, Quanfu & Xu, Jun, 2025. "Distribution reconstruction and reliability assessment of complex LSFs via an adaptive Non-parametric Density Estimation Method," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s095183202400680x
    DOI: 10.1016/j.ress.2024.110609
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400680X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karunamuni, R.J. & Zhang, S., 2008. "Some improvements on a boundary corrected kernel density estimator," Statistics & Probability Letters, Elsevier, vol. 78(5), pages 499-507, April.
    2. Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
    3. Breitung, Karl, 2019. "The geometry of limit state function graphs and subset simulation: Counterexamples," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 98-106.
    4. He, Wanxin & Wang, Yiyuan & Li, Gang & Zhou, Jinhang, 2024. "A novel maximum entropy method based on the B-spline theory and the low-discrepancy sequence for complex probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Papaioannou, Iason & Geyer, Sebastian & Straub, Daniel, 2019. "Improved cross entropy-based importance sampling with a flexible mixture model," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xiaomin & Lu, Zhenzhou, 2025. "Efficient global reliability sensitivity method by combining dimensional reduction integral with stochastic collocation," Reliability Engineering and System Safety, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dasgupta, Agnimitra & Johnson, Erik A., 2024. "REIN: Reliability Estimation via Importance sampling with Normalizing flows," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Chaubey, Yogendra P. & Dewan, Isha & Li, Jun, 2011. "Smooth estimation of survival and density functions for a stationary associated process using Poisson weights," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 267-276, February.
    3. Y. Ziane & S. Adjabi & N. Zougab, 2015. "Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1645-1658, August.
    4. Baszczyńska Aleksandra, 2016. "Kernel Estimation of Cumulative Distribution Function of a Random Variable with Bounded Support," Statistics in Transition New Series, Statistics Poland, vol. 17(3), pages 541-556, September.
    5. Yasmina Ziane & Nabil Zougab & Smail Adjabi, 2018. "Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data," Computational Statistics, Springer, vol. 33(1), pages 299-318, March.
    6. Gabrielli, M. Florencia & Willington, Manuel, 2023. "Estimating damages from bidding rings in first-price auctions," Economic Modelling, Elsevier, vol. 126(C).
    7. Cattaneo, Matias D. & Jansson, Michael & Ma, Xinwei, 2024. "Local regression distribution estimators," Journal of Econometrics, Elsevier, vol. 240(2).
    8. Xu, Chunlong & Yang, Ya & Wu, Huajun & Zhou, Jianping, 2023. "A new active learning method for system reliability analysis with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    9. Ameryan, Ala & Ghalehnovi, Mansour & Rashki, Mohsen, 2022. "AK-SESC: a novel reliability procedure based on the integration of active learning kriging and sequential space conversion method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. El Masri, Maxime & Morio, Jérôme & Simatos, Florian, 2021. "Improvement of the cross-entropy method in high dimension for failure probability estimation through a one-dimensional projection without gradient estimation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Ma, Yuan-Zhuo & Zhu, Yi-Chen & Li, Hong-Shuang & Nan, Hang & Zhao, Zhen-Zhou & Jin, Xiang-Xiang, 2022. "Adaptive Kriging-based failure probability estimation for multiple responses," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    12. Ni, Pinghe & Li, Jun & Hao, Hong & Yan, Weimin & Du, Xiuli & Zhou, Hongyuan, 2020. "Reliability analysis and design optimization of nonlinear structures," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    13. Shunpu Zhang & Rohana Karunamuni, 2010. "Boundary performance of the beta kernel estimators," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(1), pages 81-104.
    14. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    15. Sobom M. Somé & Célestin C. Kokonendji & Smail Adjabi & Naushad A. Mamode Khan & Said Beddek, 2024. "Multiple combined gamma kernel estimations for nonnegative data with Bayesian adaptive bandwidths," Computational Statistics, Springer, vol. 39(2), pages 905-937, April.
    16. Aleksandra Baszczyńska, 2016. "Kernel Estimation of Cumulative Distribution Function of a Random Variable with Bounded Support," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(3), pages 541-556, September.
    17. Joris Pinkse & Karl Schurter, 2019. "Estimation of Auction Models with Shape Restrictions," Papers 1912.07466, arXiv.org.
    18. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    19. Dang, Chao & Beer, Michael, 2024. "Semi-Bayesian active learning quadrature for estimating extremely low failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    20. Dehghani, Nariman L. & Zamanian, Soroush & Shafieezadeh, Abdollah, 2021. "Adaptive network reliability analysis: Methodology and applications to power grid," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s095183202400680x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.