IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025001966.html
   My bibliography  Save this article

Efficient global reliability sensitivity method by combining dimensional reduction integral with stochastic collocation

Author

Listed:
  • Wu, Xiaomin
  • Lu, Zhenzhou

Abstract

Defined as the mean square difference between unconditional failure probability (FP) and conditional FP on fixed input realization, global reliability sensitivity (GRS) can quantify the effect of random input on FP. For efficiently estimating the GRS, a novel method is proposed by combining truncated dimensional reduction integral with stochastic collocation (DRI-SC). In the DRI-SC, the unconditional and conditional FPs are equivalently converted into the expected cumulative distribution function (CDF) of a selected reduction input. Then, using the continuity of CDF, a truncated DRI is combined with SC to efficiently estimate the expected CDF. To further enhance the efficiency of DRI-SC, an adaptive Kriging model is trained to provide the integrand CDF values at the SC nodes. The novelties of the DRI-SC include deriving the unconditional and conditional FPs required by GRS as the expected CDF, designing an SC node-sharing strategy, and training the Kriging model in the SC node set. DRI-SC inherits the universality of numerical simulation but avoids its prohibitive computation, and the DRI-SC maintains the efficiency of the existing SC-based GRS methods but avoids the density fitting. The superiority of the DRI-SC over existing methods is verified by the presented examples.

Suggested Citation

  • Wu, Xiaomin & Lu, Zhenzhou, 2025. "Efficient global reliability sensitivity method by combining dimensional reduction integral with stochastic collocation," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001966
    DOI: 10.1016/j.ress.2025.110993
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110993?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.