IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025001966.html
   My bibliography  Save this article

Efficient global reliability sensitivity method by combining dimensional reduction integral with stochastic collocation

Author

Listed:
  • Wu, Xiaomin
  • Lu, Zhenzhou

Abstract

Defined as the mean square difference between unconditional failure probability (FP) and conditional FP on fixed input realization, global reliability sensitivity (GRS) can quantify the effect of random input on FP. For efficiently estimating the GRS, a novel method is proposed by combining truncated dimensional reduction integral with stochastic collocation (DRI-SC). In the DRI-SC, the unconditional and conditional FPs are equivalently converted into the expected cumulative distribution function (CDF) of a selected reduction input. Then, using the continuity of CDF, a truncated DRI is combined with SC to efficiently estimate the expected CDF. To further enhance the efficiency of DRI-SC, an adaptive Kriging model is trained to provide the integrand CDF values at the SC nodes. The novelties of the DRI-SC include deriving the unconditional and conditional FPs required by GRS as the expected CDF, designing an SC node-sharing strategy, and training the Kriging model in the SC node set. DRI-SC inherits the universality of numerical simulation but avoids its prohibitive computation, and the DRI-SC maintains the efficiency of the existing SC-based GRS methods but avoids the density fitting. The superiority of the DRI-SC over existing methods is verified by the presented examples.

Suggested Citation

  • Wu, Xiaomin & Lu, Zhenzhou, 2025. "Efficient global reliability sensitivity method by combining dimensional reduction integral with stochastic collocation," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001966
    DOI: 10.1016/j.ress.2025.110993
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110993?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiron, Marie & Genest, Christian & Morio, Jérôme & Dubreuil, Sylvain, 2023. "Failure probability estimation through high-dimensional elliptical distribution modeling with multiple importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Su, Chenxin & Li, Bo & Zhang, Wei & Tian, Wei & Liao, Wenhe, 2025. "An analysis and reliability-based optimization design method of trajectory accuracy for industrial robots considering parametric uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    3. Marrel, Amandine & Chabridon, Vincent, 2021. "Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    4. Zhang, Yang & Xu, Jun & Gardoni, Paolo, 2024. "A loading contribution degree analysis-based strategy for time-variant reliability analysis of structures under multiple loading stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Zhou, Changcong & Shi, Zhuangke & Kucherenko, Sergei & Zhao, Haodong, 2022. "A unified approach for global sensitivity analysis based on active subspace and Kriging," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Guo, Qing & Liu, Yongshou & Chen, Bingqian & Yao, Qin, 2021. "A variable and mode sensitivity analysis method for structural system using a novel active learning Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    7. Chan, Jianpeng & Papaioannou, Iason & Straub, Daniel, 2022. "An adaptive subset simulation algorithm for system reliability analysis with discontinuous limit states," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Dang, Chao & Valdebenito, Marcos A. & Wei, Pengfei & Song, Jingwen & Beer, Michael, 2024. "Bayesian active learning line sampling with log-normal process for rare-event probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    9. Wei, Pengfei & Lu, Zhenzhou & Yuan, Xiukai, 2013. "Monte Carlo simulation for moment-independent sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 60-67.
    10. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Mehni, Moien Barkhori & Mehni, Mohammad Barkhori, 2023. "Reliability analysis with cross-entropy based adaptive Markov chain importance sampling and control variates," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Yu, Quanfu & Xu, Jun, 2025. "Distribution reconstruction and reliability assessment of complex LSFs via an adaptive Non-parametric Density Estimation Method," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    13. Wu, Jinhui & Tao, Yourui & Han, Xu, 2023. "Polynomial chaos expansion approximation for dimension-reduction model-based reliability analysis method and application to industrial robots," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Wang, Tao & Lu, Da-Gang & Tan, Yi-Qiu, 2025. "Refined dimension-reduction integration method for uncertainty propagation in stochastic systems: Estimation of statistical moments," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    15. Lamboni, Matieyendou & Kucherenko, Sergei, 2021. "Multivariate sensitivity analysis and derivative-based global sensitivity measures with dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    16. Zdeněk Kala, 2021. "New Importance Measures Based on Failure Probability in Global Sensitivity Analysis of Reliability," Mathematics, MDPI, vol. 9(19), pages 1-20, September.
    17. Weng, Ye-Yao & Liu, Teng & Zhang, Xuan-Yi & Zhao, Yan-Gang, 2025. "Probability density estimation of polynomial chaos and its application in structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    18. Moustapha, Maliki & Parisi, Pietro & Marelli, Stefano & Sudret, Bruno, 2024. "Reliability analysis of arbitrary systems based on active learning and global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    19. Zhao, Zhao & Lu, Zhao-Hui & Zhao, Yan-Gang, 2024. "A novel single-loop estimation method for predictive failure probability-based global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    20. Valdebenito, M.A. & Jensen, H.A. & Hernández, H.B. & Mehrez, L., 2018. "Sensitivity estimation of failure probability applying line sampling," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 99-111.
    21. Tong, Ming-Na & Zhao, Yan-Gang & Lu, Zhao-Hui, 2021. "Normal transformation for correlated random variables based on L-moments and its application in reliability engineering," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    22. Dang, Chao & Beer, Michael, 2024. "Semi-Bayesian active learning quadrature for estimating extremely low failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    23. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    24. Zha, Congyi & Pan, Chenrong & Sun, Zhili & Liu, Qin, 2024. "A single-loop reliability sensitivity analysis strategy for time-dependent rare events with both random variables and stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    25. Surget, Charles & Dubreuil, Sylvain & Morio, Jérôme & Mattrand, Cécile & Bourinet, Jean-Marc & Gayton, Nicolas, 2025. "A sensitivity analysis based trade-off between probabilistic model identification and statistical estimation," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    26. Allahvirdizadeh, R. & Andersson, A. & Karoumi, R., 2023. "Improved dynamic design method of ballasted high-speed railway bridges using surrogate-assisted reliability-based design optimization of dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    27. Xing, Lili & Gardoni, Paolo & Zhou, Ying & Zhang, Peng, 2025. "DNN-metamodeling and fragility estimate of high-rise buildings with outrigger systems subject to seismic loads," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    28. Yun, Wanying & Lu, Zhenzhou & Jiang, Xian, 2019. "An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 174-182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Nguyen, Phong T.T. & Manuel, Lance, 2024. "Uncertainty quantification in low-probability response estimation using sliced inverse regression and polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Torii, André Jacomel & Novotny, Antonio André, 2021. "A priori error estimates for local reliability-based sensitivity analysis with Monte Carlo Simulation," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. Rashki, Mohsen & Faes, Matthias G.R. & Wei, Pengfei & Song, Jingwen, 2025. "Asymptotic subset simulation: An efficient extrapolation tool for small probabilities approximation," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    5. Barr, John & Rabitz, Herschel, 2023. "Kernel-based global sensitivity analysis obtained from a single data set," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Xie, Bin & Wang, Yanzhong & Zhu, Yunyi & E, Shiyuan & Wu, Yu, 2025. "Vibration response-based time-variant reliability and sensitivity analysis of rolling bearings using the first-passage method," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    7. Wan, Liangqi & Wei, Yumeng & Zhang, Qiaoke & Liu, Lei & Chen, Yuejian, 2025. "A new multiple stochastic Kriging model for active learning surrogate-assisted reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    8. Zhao, Zhao & Lu, Zhao-Hui & Zhao, Yan-Gang, 2024. "A novel single-loop estimation method for predictive failure probability-based global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    9. Zhang, Yu & Dong, You & Frangopol, Dan M., 2024. "An error-based stopping criterion for spherical decomposition-based adaptive Kriging model and rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Zhang, Xiaodong & Dimitrov, Nikolay, 2024. "Variable importance analysis of wind turbine extreme responses with Shapley value explanation," Renewable Energy, Elsevier, vol. 232(C).
    11. Wang, Tao & Lu, Da-Gang & Tan, Yi-Qiu, 2025. "Refined dimension-reduction integration method for uncertainty propagation in stochastic systems: Estimation of statistical moments," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    12. Zhou, Di & Chen, Zhen & Chen, Zhaoxiang & Han, Jinrui & Pan, Ershun, 2025. "Dynamic reliability evaluation considering the stochastic evolving process based on extreme characteristics of system responses," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    13. Wu, Lingxu & Zhou, Wangbao & Zhong, Tianxuan & Jiang, Lizhong & Wen, Tianxing & Xiong, Lijun & Yi, Jiang, 2025. "Uncertainty quantification in predicting seismic response of high-speed railway simply-supported bridge system based on bootstrap," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    14. Vuillod, Bruno & Montemurro, Marco & Panettieri, Enrico & Hallo, Ludovic, 2023. "A comparison between Sobol’s indices and Shapley’s effect for global sensitivity analysis of systems with independent input variables," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Li, Long & Xu, Jun & Kuok, Sin-Chi, 2024. "Bayesian sparse grid (BSG) approach for information salvage in reliability assessment of deteriorating structures," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    16. Zhang, Tongzhou & Hu, Weifei & Zhao, Feng & Yan, Jiquan & Tang, Ning & Lee, Ikjin & Tan, Jianrong, 2025. "Long-term extreme response evaluation of stochastic models using adaptive stochastic importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    17. Bai, Zhiwei & Song, Shufang, 2025. "Physics-based pruning neural network for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    18. Zhan, Hongyou & Xiao, Ning-Cong, 2025. "A new active learning surrogate model for time- and space-dependent system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    19. Braga, Joaquim A.P. & Costa, João N. & Ambrósio, Jorge & Frey, Daniel & Andrade, António R., 2024. "Robust assessment of railway vehicle safety risks in operation using a proposed data-driven wheel profile generation approach: Design of computer experiments and surrogate models," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    20. Wang, Tianzhe & Chen, Zequan & Li, Guofa & He, Jialong & Liu, Chao & Du, Xuejiao, 2024. "A novel method for high-dimensional reliability analysis based on activity score and adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.