IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v256y2025ics095183202400824x.html
   My bibliography  Save this article

Refined dimension-reduction integration method for uncertainty propagation in stochastic systems: Estimation of statistical moments

Author

Listed:
  • Wang, Tao
  • Lu, Da-Gang
  • Tan, Yi-Qiu

Abstract

In terms of precision, effectiveness and generality, the quantification and propagation of uncertainty for stochastic systems remains a challenge, especially for the estimation of statistical moments for stochastic responses. In this work, a mixed variables-based and vectors-based refined dimension-reduction model is developed to replace a complex response function by component functions that contain both variables and vectors. On the basis of the developed refined dimension reduction model, a new dimension-reduction integration method that takes into account accuracy and efficiency, termed the refined dimension-reduction integration method (RDIM), is put forth as a means of estimating moments of response functions. Two categories of examples, comprising several numerical examples and two engineering examples, are examined to demonstrate the functionality of the proposed RDIM. The findings indicate that the RDIM is adaptable and can maintain a balance between precision and effectiveness for each example.

Suggested Citation

  • Wang, Tao & Lu, Da-Gang & Tan, Yi-Qiu, 2025. "Refined dimension-reduction integration method for uncertainty propagation in stochastic systems: Estimation of statistical moments," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s095183202400824x
    DOI: 10.1016/j.ress.2024.110753
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400824X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tabandeh, Armin & Sharma, Neetesh & Gardoni, Paolo, 2022. "Uncertainty propagation in risk and resilience analysis of hierarchical systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Breitung, Karl, 2024. "The return of the design points," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    3. Rajabalinejad, M., 2010. "Bayesian Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1050-1060.
    4. Guan, Xuefei, 2024. "Sparse moment quadrature for uncertainty modeling and quantification," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Bensi, Michelle & Kiureghian, Armen Der & Straub, Daniel, 2013. "Efficient Bayesian network modeling of systems," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 200-213.
    6. Wu, Jinhui & Tao, Yourui & Han, Xu, 2023. "Polynomial chaos expansion approximation for dimension-reduction model-based reliability analysis method and application to industrial robots," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Zhang, Xuan-Yi & Lu, Zhao-Hui & Wu, Shi-Yu & Zhao, Yan-Gang, 2021. "An Efficient Method for Time-Variant Reliability including Finite Element Analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    8. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Betz, Wolfgang & Papaioannou, Iason & Straub, Daniel, 2022. "Bayesian post-processing of Monte Carlo simulation in reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xiaomin & Lu, Zhenzhou, 2025. "Efficient global reliability sensitivity method by combining dimensional reduction integral with stochastic collocation," Reliability Engineering and System Safety, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Xiaomin & Lu, Zhenzhou, 2025. "Efficient global reliability sensitivity method by combining dimensional reduction integral with stochastic collocation," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    2. Ramadhani, Adhitya & Khan, Faisal & Colbourne, Bruce & Ahmed, Salim & Taleb-Berrouane, Mohammed, 2022. "Resilience assessment of offshore structures subjected to ice load considering complex dependencies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Chen, Zhenzhong & Huang, Dongyu & Li, Xiaoke & Qiu, Guiming & Zhao, Pengcheng, 2024. "A reliability analysis method based on the intersection area division of hypersphere and paraboloid," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    4. Zha, Congyi & Pan, Chenrong & Sun, Zhili & Liu, Qin, 2024. "A single-loop reliability sensitivity analysis strategy for time-dependent rare events with both random variables and stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    5. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    8. Du, Jianwei & Ren, Gang & Cui, Jialei & Cao, Qi & Wang, Jian & Wu, Chenyang & Zhang, Jiefei, 2025. "Monitoring of operational resilience on urban road network: A Shaoxing case study," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    9. Bai, Guo-Peng & Er, Guo-Kang & Iu, Vai Pan, 2024. "A novel stochastic approach to investigate the probabilistic characteristics of the ship roll system with sinusoidal restoring force," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    10. Haritha, P.C. & Anjaneyulu, M.V.L.R., 2024. "Comparison of topological functionality-based resilience metrics using link criticality," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Mühlhofer, Evelyn & Koks, Elco E. & Kropf, Chahan M. & Sansavini, Giovanni & Bresch, David N., 2023. "A generalized natural hazard risk modelling framework for infrastructure failure cascades," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    12. Mohammadreza Rajabalinejad & Zeki Demirbilek & Tewfik Mahdi, 2010. "Determination of failure probabilities of flood defence systems with improved dynamic bounds method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(1), pages 95-109, October.
    13. Zhang, Yang & Xu, Jun & Gardoni, Paolo, 2024. "A loading contribution degree analysis-based strategy for time-variant reliability analysis of structures under multiple loading stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Du, Jianwei & Cui, Jialei & Ren, Gang & Thompson, Russell G. & Zhang, Lele, 2025. "Cascading failures and resilience evolution in urban road traffic networks with bounded rational route choice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 664(C).
    15. Mohammadreza Rajabalinejad & Tew-Fik Mahdi, 2010. "The inclusive and simplified forms of Bayesian interpolation for general and monotonic models using Gaussian and Generalized Beta distributions with application to Monte Carlo simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(1), pages 29-49, October.
    16. Su, Chenxin & Li, Bo & Zhang, Wei & Tian, Wei & Liao, Wenhe, 2025. "An analysis and reliability-based optimization design method of trajectory accuracy for industrial robots considering parametric uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    17. Paglioni, Vincent P. & Groth, Katrina M., 2022. "Dependency definitions for quantitative human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    18. Cai, Yu & Zhao, Wei & Wang, Xiaoping & Ou, Yanjun & Chen, Yangyang & Li, Xueyan, 2024. "A novel multiple linearization method for reliability analysis based on evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    19. Xie, Bin & Wang, Yanzhong & Zhu, Yunyi & E, Shiyuan & Wu, Yu, 2025. "Vibration response-based time-variant reliability and sensitivity analysis of rolling bearings using the first-passage method," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    20. Li, Butong & Zhu, Junjie & Zhao, Xufeng, 2025. "A hybrid physics informed predictive scheme for predicting low-cycle fatigue life and reliability of aerospace materials under multiaxial loading conditions," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:256:y:2025:i:c:s095183202400824x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.