IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v248y2024ics0951832024002242.html
   My bibliography  Save this article

Reliability analysis of arbitrary systems based on active learning and global sensitivity analysis

Author

Listed:
  • Moustapha, Maliki
  • Parisi, Pietro
  • Marelli, Stefano
  • Sudret, Bruno

Abstract

System reliability analysis aims at computing the probability of failure of an engineering system given a set of uncertain inputs and limit state functions. Active-learning solution schemes have been shown to be a viable tool but as of yet they are not as efficient as in the context of component reliability analysis. This is due to some peculiarities of system problems, such as the presence of multiple failure modes and their uneven contribution to failure, or the dependence on the system configuration (e.g., series or parallel). In this work, we propose a novel active learning strategy designed for solving general system reliability problems. This algorithm combines subset simulation and Kriging/PC-Kriging, and relies on an enrichment scheme tailored to specifically address the weaknesses of this class of methods. More specifically, it relies on three components: (i) a new learning function that does not require the specification of the system configuration, (ii) a density-based clustering technique that allows one to automatically detect the different failure modes, and (iii) sensitivity analysis to estimate the contribution of each limit state to system failure so as to select only the most relevant ones for enrichment. The proposed method is validated on two analytical examples and compared against results gathered in the literature. Finally, a complex engineering problem related to power transmission is solved, thereby showcasing the efficiency of the proposed method in a real-case scenario.

Suggested Citation

  • Moustapha, Maliki & Parisi, Pietro & Marelli, Stefano & Sudret, Bruno, 2024. "Reliability analysis of arbitrary systems based on active learning and global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002242
    DOI: 10.1016/j.ress.2024.110150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.