IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025001772.html
   My bibliography  Save this article

FORM-based global reliability sensitivity analysis of systems with multiple failure modes

Author

Listed:
  • Papaioannou, Iason
  • Straub, Daniel

Abstract

Global variance-based reliability sensitivity indices arise from a variance decomposition of the indicator function describing the failure event. The first-order indices reflect the main effect of each variable on the variance of the failure event and can be used for variable prioritization; the total-effect indices represent the total effect of each variable, including its interaction with other variables, and can be used for variable fixing. This contribution derives expressions for the variance-based reliability sensitivity indices of systems with multiple failure modes that are based on the first-order reliability method (FORM). The derived expressions are a function of the FORM results and, hence, do not require additional expensive model evaluations. They do involve the evaluation of multinormal integrals, for which effective solutions are available. We demonstrate that the derived expressions enable an accurate estimation of variance-based reliability sensitivities for general system problems to which FORM is applicable.

Suggested Citation

  • Papaioannou, Iason & Straub, Daniel, 2025. "FORM-based global reliability sensitivity analysis of systems with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001772
    DOI: 10.1016/j.ress.2025.110974
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.