IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v225y2022ics0951832022002514.html
   My bibliography  Save this article

An adaptive subset simulation algorithm for system reliability analysis with discontinuous limit states

Author

Listed:
  • Chan, Jianpeng
  • Papaioannou, Iason
  • Straub, Daniel

Abstract

Many system reliability problems involve performance functions with a discontinuous distribution. Such situations occur in both connectivity- and flow-based network reliability problems, due to binary or multi-state random variables entering the definition of the system performance or due to the discontinuous nature of the system model. When solving this kind of problems, the standard subset simulation algorithm with fixed intermediate conditional probability and fixed number of samples per level can lead to substantial errors, since the discontinuity of the output can result in an ambiguous definition of the sought percentile of the samples and, hence, of the intermediate domains. In this paper, we propose an adaptive subset simulation algorithm to determine the reliability of systems whose performance function is a discontinuous random variable. The proposed algorithm chooses the number of samples and the intermediate conditional probabilities adaptively. We discuss two MCMC algorithms for generation of the samples in the intermediate domains, the adaptive conditional sampling method and a novel independent Metropolis–Hastings algorithm that efficiently samples in discrete input spaces. The accuracy and efficiency of the proposed algorithm are demonstrated by a set of numerical examples.

Suggested Citation

  • Chan, Jianpeng & Papaioannou, Iason & Straub, Daniel, 2022. "An adaptive subset simulation algorithm for system reliability analysis with discontinuous limit states," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002514
    DOI: 10.1016/j.ress.2022.108607
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022002514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zdravko I. Botev & Pierre L'Ecuyer & Gerardo Rubino & Richard Simard & Bruno Tuffin, 2013. "Static Network Reliability Estimation via Generalized Splitting," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 56-71, February.
    2. Yeh, Wei-Chang, 2021. "A quick BAT for evaluating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. George S. Fishman, 1986. "A Monte Carlo Sampling Plan for Estimating Network Reliability," Operations Research, INFORMS, vol. 34(4), pages 581-594, August.
    4. Leslie Murray & Héctor Cancela & Gerardo Rubino, 2013. "A splitting algorithm for network reliability estimation," IISE Transactions, Taylor & Francis Journals, vol. 45(2), pages 177-189.
    5. Chang, Ping-Chen, 2022. "MC-based simulation approach for two-terminal multi-state network reliability evaluation without knowing d-MCs," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    6. George S. Fishman, 1989. "Monte Carlo estimation of the maximal flow distribution with discrete stochastic arc capacity levels," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(6), pages 829-849, December.
    7. Byun, Ji-Eun & Song, Junho, 2021. "Generalized matrix-based Bayesian network for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    8. He, Jun, 2021. "An extended recursive decomposition algorithm for dynamic seismic reliability evaluation of lifeline networks with dependent component failures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    10. Paredes, R. & Dueñas-Osorio, L. & Meel, K.S. & Vardi, M.Y., 2019. "Principled network reliability approximation: A counting-based approach," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    11. Yu, Weichao & Huang, Weihe & Wen, Kai & Zhang, Jie & Liu, Hongfei & Wang, Kun & Gong, Jing & Qu, Chunxu, 2021. "Subset simulation-based reliability analysis of the corroding natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Stéphane Bulteau & Mohamed El Khadiri, 2002. "A new importance sampling Monte Carlo method for a flow network reliability problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(2), pages 204-228, March.
    13. Zhou, Yifan & Liu, Libo & Li, Hao, 2022. "Reliability estimation and optimisation of multistate flow networks using a conditional Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    14. K.-P. Hui & N. Bean & M. Kraetzl & Dirk Kroese, 2005. "The Cross-Entropy Method for Network Reliability Estimation," Annals of Operations Research, Springer, vol. 134(1), pages 101-118, February.
    15. Zdravko I. Botev & Dirk P. Kroese, 2008. "An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting," Methodology and Computing in Applied Probability, Springer, vol. 10(4), pages 471-505, December.
    16. Papaioannou, Iason & Geyer, Sebastian & Straub, Daniel, 2019. "Improved cross entropy-based importance sampling with a flexible mixture model," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Long-Wen & Dang, Chao & Zhao, Yan-Gang, 2023. "An efficient method for accessing structural reliability indexes via power transformation family," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Mehni, Moien Barkhori & Mehni, Mohammad Barkhori, 2023. "Reliability analysis with cross-entropy based adaptive Markov chain importance sampling and control variates," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Wei, Pengfei & Zheng, Yu & Fu, Jiangfeng & Xu, Yuannan & Gao, Weikai, 2023. "An expected integrated error reduction function for accelerating Bayesian active learning of failure probability," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Huang, Shi-Ya & Zhang, Shao-He & Liu, Lei-Lei, 2022. "A new active learning Kriging metamodel for structural system reliability analysis with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Yu, Ting & Lu, Zhenzhou & Yun, Wanying, 2023. "An efficient algorithm for analyzing multimode structure system reliability by a new learning function of most reducing average probability of misjudging system state," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Zhang, Dequan & Shen, Shuoshuo & Wu, Jinhui & Wang, Fang & Han, Xu, 2023. "Kinematic trajectory accuracy reliability analysis for industrial robots considering intercorrelations among multi-point positioning errors," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2016. "Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 117-126.
    2. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Yeh, Wei-Chang & Tan, Shi-Yi & Zhu, Wenbo & Huang, Chia-Ling & Yang, Guang-yi, 2022. "Novel binary addition tree algorithm (BAT) for calculating the direct lower-bound of the highly reliable binary-state network reliability," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Zdravko I. Botev & Pierre L'Ecuyer & Gerardo Rubino & Richard Simard & Bruno Tuffin, 2013. "Static Network Reliability Estimation via Generalized Splitting," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 56-71, February.
    5. Davila-Frias, Alex & Yodo, Nita & Le, Trung & Yadav, Om Prakash, 2023. "A deep neural network and Bayesian method based framework for all-terminal network reliability estimation considering degradation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. H. Cancela & M. Khadiri & G. Rubino, 2012. "A new simulation method based on the RVR principle for the rare event network reliability problem," Annals of Operations Research, Springer, vol. 196(1), pages 111-136, July.
    7. Vaibhav Gaur & Om Prakash Yadav & Gunjan Soni & Ajay Pal Singh Rathore, 2021. "A literature review on network reliability analysis and its engineering applications," Journal of Risk and Reliability, , vol. 235(2), pages 167-181, April.
    8. Yeh, Wei-Chang, 2022. "Novel self-adaptive Monte Carlo simulation based on binary-addition-tree algorithm for binary-state network reliability approximation," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    9. Sebastio, Stefano & Trivedi, Kishor S. & Wang, Dazhi & Yin, Xiaoyan, 2014. "Fast computation of bounds for two-terminal network reliability," European Journal of Operational Research, Elsevier, vol. 238(3), pages 810-823.
    10. Azhdari, Armaghan & Ardakan, Mostafa Abouei & Najafi, Mojtaba, 2023. "An approach for reliability optimization of a multi-state centralized network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    11. Chiron, Marie & Genest, Christian & Morio, Jérôme & Dubreuil, Sylvain, 2023. "Failure probability estimation through high-dimensional elliptical distribution modeling with multiple importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    12. Pang, W. K. & Yang, Z. H. & Hou, S. H. & Leung, P. K., 2002. "Non-uniform random variate generation by the vertical strip method," European Journal of Operational Research, Elsevier, vol. 142(3), pages 595-609, November.
    13. Dang, Chao & Wei, Pengfei & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2022. "Parallel adaptive Bayesian quadrature for rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    14. Samantha Leorato & Maura Mezzetti, 2015. "Spatial Panel Data Model with error dependence: a Bayesian Separable Covariance Approach," CEIS Research Paper 338, Tor Vergata University, CEIS, revised 09 Apr 2015.
    15. Z. Rezaei Ghahroodi & M. Ganjali, 2013. "A Bayesian approach for analysing longitudinal nominal outcomes using random coefficients transitional generalized logit model: an application to the labour force survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1425-1445, July.
    16. Kin-Ping Hui, 2011. "Cooperative Cross-Entropy method for generating entangled networks," Annals of Operations Research, Springer, vol. 189(1), pages 205-214, September.
    17. Antonello Loddo & Shawn Ni & Dongchu Sun, 2011. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 342-355, July.
    18. Chen, Ming-Hui & Ibrahim, Joseph G. & Sinha, Debajyoti, 2004. "A new joint model for longitudinal and survival data with a cure fraction," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 18-34, October.
    19. Nandram, Balgobin & Zelterman, Daniel, 2007. "Computational Bayesian inference for estimating the size of a finite population," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2934-2945, March.
    20. Samaneh Mahabadi & Mojtaba Ganjali, 2015. "A Bayesian approach for sensitivity analysis of incomplete multivariate longitudinal data with potential nonrandom dropout," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 397-417, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.