IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v244y2024ics0951832023008360.html
   My bibliography  Save this article

Dynamic pruning-based Bayesian support vector regression for reliability analysis

Author

Listed:
  • Yu, Shui
  • Ren, Yuyao
  • Wu, Xiao
  • Guo, Peng
  • Li, Yun

Abstract

Adaptive surrogate-based reliability analysis methods have garnered significant attention due to their potential to enhance computational efficiency in accurately estimating failure probability. However, the candidate sample pool remains constant for most surrogate-based reliability methods, and traversing the candidate sample pool one by one will reduce the efficiency of surrogate modeling. More importantly, maintaining a static sample pool may lead to the inclusion of samples that contribute minimally to the construction of the surrogate modeling, thereby impacting the accuracy and efficiency of the reliability analysis. Accordingly, this paper leverages the robust performance of Bayesian support vector regression to propose a dynamic pruning strategy for the candidate sample pool to estimate failure probability efficiently. A dynamic pruning strategy is presented to streamline the process further, iteratively reducing the candidate sample pool. An adaptive learning algorithm is then introduced, integrating the U function and the sparsity of training samples. This is complemented by a formulated convergence condition, contributing to an ideal surrogate model. The proposed approaches showcase superior efficiency and accuracy through illustrations using well-known benchmark problems and complex reliability analysis problems involving small failure probability and high-dimensional limit state function.

Suggested Citation

  • Yu, Shui & Ren, Yuyao & Wu, Xiao & Guo, Peng & Li, Yun, 2024. "Dynamic pruning-based Bayesian support vector regression for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832023008360
    DOI: 10.1016/j.ress.2023.109922
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023008360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jinsheng & Xu, Guoji & Yuan, Peng & Li, Yongle & Kareem, Ahsan, 2024. "An efficient and versatile Kriging-based active learning method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Chan, Jianpeng & Papaioannou, Iason & Straub, Daniel, 2022. "An adaptive subset simulation algorithm for system reliability analysis with discontinuous limit states," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Zhang, Jian & Gong, Weijie & Yue, Xinxin & Shi, Maolin & Chen, Lei, 2022. "Efficient reliability analysis using prediction-oriented active sparse polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    5. Davila-Frias, Alex & Yodo, Nita & Le, Trung & Yadav, Om Prakash, 2023. "A deep neural network and Bayesian method based framework for all-terminal network reliability estimation considering degradation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Jing, Zhao & Chen, Jianqiao & Li, Xu, 2019. "RBF-GA: An adaptive radial basis function metamodeling with genetic algorithm for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 42-57.
    7. Chunyan, Ling & Jingzhe, Lei & Way, Kuo, 2022. "Bayesian support vector machine for optimal reliability design of modular systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Cheng, Kai & Lu, Zhenzhou, 2021. "Adaptive Bayesian support vector regression model for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    9. Feng, Kaixuan & Lu, Zhenzhou & Yang, Yixin & Ling, Chunyan & He, Pengfei & Dai, Ying, 2023. "Novel Kriging based learning function for system reliability analysis with correlated failure modes," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Wang, Cao & Zhang, Hao & Li, Quanwang, 2019. "Moment-based evaluation of structural reliability," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 38-45.
    11. Roy, Atin & Chakraborty, Subrata, 2020. "Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    12. Zhang, Xufang & Wang, Lei & Sørensen, John Dalsgaard, 2019. "REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 440-454.
    13. Shi, Yan & Lu, Zhenzhou & He, Ruyang & Zhou, Yicheng & Chen, Siyu, 2020. "A novel learning function based on Kriging for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    14. Lima, João P.S. & Evangelista, F. & Guedes Soares, C., 2023. "Hyperparameter-optimized multi-fidelity deep neural network model associated with subset simulation for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    15. Li, Guosheng & Ma, Shuaichao & Zhang, Dequan & Yang, Leping & Zhang, Weihua & Wu, Zeping, 2024. "An efficient sequential anisotropic RBF reliability analysis method with fast cross-validation and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    16. Betz, Wolfgang & Papaioannou, Iason & Straub, Daniel, 2022. "Bayesian post-processing of Monte Carlo simulation in reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    17. Xiao, Ning-Cong & Zuo, Ming J. & Zhou, Chengning, 2018. "A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 330-338.
    18. Xiao, Sinan & Oladyshkin, Sergey & Nowak, Wolfgang, 2020. "Reliability analysis with stratified importance sampling based on adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    19. Xu, Jun & Kong, Fan, 2018. "A new unequal-weighted sampling method for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 94-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Shui & Wu, Xiao & Zhao, Dongyu & Li, Yun, 2024. "A two-level surrogate framework for demand-objective time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinsheng & Xu, Guoji & Yuan, Peng & Li, Yongle & Kareem, Ahsan, 2024. "An efficient and versatile Kriging-based active learning method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Wang, Jinsheng & Xu, Guoji & Li, Yongle & Kareem, Ahsan, 2022. "AKSE: A novel adaptive Kriging method combining sampling region scheme and error-based stopping criterion for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Li, Guosheng & Ma, Shuaichao & Zhang, Dequan & Yang, Leping & Zhang, Weihua & Wu, Zeping, 2024. "An efficient sequential anisotropic RBF reliability analysis method with fast cross-validation and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Xin, Fukang & Wang, Pan & Wang, Qirui & Li, Lei & Cheng, Lei & Lei, Huajin & Ma, Fangyun, 2024. "Parallel adaptive ensemble of metamodels combined with hypersphere sampling for rare failure events," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    8. Zhou, Tong & Peng, Yongbo, 2022. "Reliability analysis using adaptive Polynomial-Chaos Kriging and probability density evolution method," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Li, Chen & Wen, Jiong-Ran & Wan, Jing & Taylan, Osman & Fei, Cheng-Wei, 2024. "Adaptive directed support vector machine method for the reliability evaluation of aeroengine structure," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    10. Wei, Pengfei & Zheng, Yu & Fu, Jiangfeng & Xu, Yuannan & Gao, Weikai, 2023. "An expected integrated error reduction function for accelerating Bayesian active learning of failure probability," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Dang, Chao & Wei, Pengfei & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2022. "Parallel adaptive Bayesian quadrature for rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Li, Wenxiong & Geng, Rong & Chen, Suiyin, 2024. "CSP-free adaptive Kriging surrogate model method for reliability analysis with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    13. Li, Junxiang & Chen, Jianqiao, 2019. "Solving time-variant reliability-based design optimization by PSO-t-IRS: A methodology incorporating a particle swarm optimization algorithm and an enhanced instantaneous response surface," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Li, Luxin & Chen, Guohai & Fang, Mingxuan & Yang, Dixiong, 2021. "Reliability analysis of structures with multimodal distributions based on direct probability integral method," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Li, Xiaoke & Zhu, Heng & Chen, Zhenzhong & Ming, Wuyi & Cao, Yang & He, Wenbin & Ma, Jun, 2022. "Limit state Kriging modeling for reliability-based design optimization through classification uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    16. Chen, Xuyong & Xu, Zhifeng & Wu, Yushun & Wu, Qiaoyun, 2023. "Heuristic algorithms for reliability estimation based on breadth-first search of a grid tree," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    17. Mathpati, Yogesh Chandrakant & More, Kalpesh Sanjay & Tripura, Tapas & Nayek, Rajdip & Chakraborty, Souvik, 2023. "MAntRA: A framework for model agnostic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Meng, Yuan & Zhang, Dequan & Shi, Baojun & Wang, Dapeng & Wang, Fang, 2024. "An active learning Kriging model with approximating parallel strategy for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    19. Dong, Manman & Cheng, Yongbo & Wan, Liangqi, 2024. "A new adaptive multi-kernel relevance vector regression for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Xiongxiong You & Mengya Zhang & Diyin Tang & Zhanwen Niu, 2022. "An active learning method combining adaptive kriging and weighted penalty for structural reliability analysis," Journal of Risk and Reliability, , vol. 236(1), pages 160-172, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832023008360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.