IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v228y2022ics0951832022003726.html
   My bibliography  Save this article

Efficient reliability analysis using prediction-oriented active sparse polynomial chaos expansion

Author

Listed:
  • Zhang, Jian
  • Gong, Weijie
  • Yue, Xinxin
  • Shi, Maolin
  • Chen, Lei

Abstract

In this paper, a prediction-oriented active sparse polynomial chaos expansion (PAS-PCE) is proposed for reliability analysis. Instead of leveraging on additional techniques to reduce the problem dimensionality and/or to obtain the local error estimates, which has been done in the majority of existing PCE-based methods, this study first makes use of the Bregman-iterative greedy coordinate descent in effectively solving the least absolute shrinkage and selection operator based regression for sparse PCE approximation with a small set of initial samples. Then, the local variance distribution of the performance function is predicted using the approximated PCE. By maximizing an optimality measure that balances the exploration of design space and exploitation of the PCE characteristics, a recently proposed learning function is subsequently adopted for selecting the optimal samples one by one from a candidate pool to cover the limit state surface regions proportionally to the predicted local variance. The performance of the proposed PAS-PCE is assessed on four numerical examples of varying complexity and input dimensionality through comparison with several state-of-the-art active learning methods based on a variety of surrogate models. Results show that the proposed method is superior to the benchmark algorithms in terms of both accuracy and efficiency for reliability analysis.

Suggested Citation

  • Zhang, Jian & Gong, Weijie & Yue, Xinxin & Shi, Maolin & Chen, Lei, 2022. "Efficient reliability analysis using prediction-oriented active sparse polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:reensy:v:228:y:2022:i:c:s0951832022003726
    DOI: 10.1016/j.ress.2022.108749
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022003726
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Kai & Lu, Zhenzhou, 2019. "Time-variant reliability analysis based on high dimensional model representation," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 310-319.
    2. P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
    3. Enrico Zio, 2013. "The Monte Carlo Simulation Method for System Reliability and Risk Analysis," Springer Series in Reliability Engineering, Springer, edition 127, number 978-1-4471-4588-2, January.
    4. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    5. Enrico Zio, 2013. "System Reliability and Risk Analysis by Monte Carlo Simulation," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 59-81, Springer.
    6. Xiao, Ning-Cong & Zuo, Ming J. & Zhou, Chengning, 2018. "A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 330-338.
    7. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    8. Wang, Zeyu & Shafieezadeh, Abdollah, 2019. "REAK: Reliability analysis through Error rate-based Adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 33-45.
    9. Zhang, Z. & Jiang, C. & Wang, G.G. & Han, X., 2015. "First and second order approximate reliability analysis methods using evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 40-49.
    10. Jing, Zhao & Chen, Jianqiao & Li, Xu, 2019. "RBF-GA: An adaptive radial basis function metamodeling with genetic algorithm for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 42-57.
    11. Echard, B. & Gayton, N. & Lemaire, M. & Relun, N., 2013. "A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 232-240.
    12. Enrico Zio, 2013. "Monte Carlo Simulation: The Method," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 19-58, Springer.
    13. Zhou, Yicheng & Lu, Zhenzhou & Yun, Wanying, 2020. "Active sparse polynomial chaos expansion for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    14. Teixeira, Rui & Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan, 2021. "Reliability analysis using a multi-metamodel complement-basis approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    15. Enrico Zio, 2013. "System Reliability and Risk Analysis," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 7-17, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zihan & Daeipour, Mohamad & Xu, Hongyi, 2023. "Quantification and propagation of Aleatoric uncertainties in topological structures," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Pei, Pei & Zhou, Tong, 2023. "One-step look-ahead policy for active learning reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. Shengwen Yin & Keliang Jin & Yu Bai & Wei Zhou & Zhonggang Wang, 2023. "Solution-Space-Reduction-Based Evidence Theory Method for Stiffness Evaluation of Air Springs with Epistemic Uncertainty," Mathematics, MDPI, vol. 11(5), pages 1-19, March.
    4. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Mathpati, Yogesh Chandrakant & More, Kalpesh Sanjay & Tripura, Tapas & Nayek, Rajdip & Chakraborty, Souvik, 2023. "MAntRA: A framework for model agnostic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    2. Xiao, Sinan & Oladyshkin, Sergey & Nowak, Wolfgang, 2020. "Reliability analysis with stratified importance sampling based on adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Li, Junxiang & Chen, Jianqiao, 2019. "Solving time-variant reliability-based design optimization by PSO-t-IRS: A methodology incorporating a particle swarm optimization algorithm and an enhanced instantaneous response surface," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Wang, Fan & Li, Heng, 2018. "System reliability under prescribed marginals and correlations: Are we correct about the effect of correlations?," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 94-104.
    5. Cadini, F. & Gioletta, A., 2016. "A Bayesian Monte Carlo-based algorithm for the estimation of small failure probabilities of systems affected by uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 15-27.
    6. Li, Guosheng & Ma, Shuaichao & Zhang, Dequan & Yang, Leping & Zhang, Weihua & Wu, Zeping, 2024. "An efficient sequential anisotropic RBF reliability analysis method with fast cross-validation and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Xiongxiong You & Mengya Zhang & Diyin Tang & Zhanwen Niu, 2022. "An active learning method combining adaptive kriging and weighted penalty for structural reliability analysis," Journal of Risk and Reliability, , vol. 236(1), pages 160-172, February.
    9. Cadini, F. & Santos, F. & Zio, E., 2014. "An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 109-117.
    10. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    11. Guowang Meng & Hongle Li & Bo Wu & Guangyang Liu & Huazheng Ye & Yiming Zuo, 2023. "Prediction of the Tunnel Collapse Probability Using SVR-Based Monte Carlo Simulation: A Case Study," Sustainability, MDPI, vol. 15(9), pages 1-21, April.
    12. Michael Saidani & Alissa Kendall & Bernard Yannou & Yann Leroy & François Cluzel, 2019. "Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators," Post-Print hal-02094798, HAL.
    13. Michele Compare & Francesco Di Maio & Enrico Zio & Fausto Carlevaro & Sara Mattafirri, 2016. "Improving scheduled maintenance by missing data reconstruction: A double-loop Monte Carlo approach," Journal of Risk and Reliability, , vol. 230(5), pages 502-511, October.
    14. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    15. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Di Maio, Francesco & Pettorossi, Chiara & Zio, Enrico, 2023. "Entropy-driven Monte Carlo simulation method for approximating the survival signature of complex infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Tito G. Amaral & Vitor Fernão Pires & Armando Cordeiro & Daniel Foito & João F. Martins & Julia Yamnenko & Tetyana Tereschenko & Liudmyla Laikova & Ihor Fedin, 2023. "Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform," Energies, MDPI, vol. 16(6), pages 1-18, March.
    18. Zhang, Hanxiao & Sun, Muxia & Li, Yan-Fu, 2022. "Reliability–redundancy allocation problem in multi-state flow network: Minimal cut-based approximation scheme," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    19. Tosoni, E. & Salo, A. & Govaerts, J. & Zio, E., 2019. "Comprehensiveness of scenarios in the safety assessment of nuclear waste repositories," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 561-573.
    20. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:228:y:2022:i:c:s0951832022003726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.