IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v172y2018icp195-206.html
   My bibliography  Save this article

An efficient-robust structural reliability method by adaptive finite-step length based on Armijo line search

Author

Listed:
  • Keshtegar, Behrooz
  • Chakraborty, Subrata

Abstract

The robustness of iterative formula as well as its computational efficiency is the essential characteristic of interest for effective reliability analysis of structures by first order reliability method (FORM). A robust and efficient iterative algorithm termed as finite-based Armijo search direction (FAL) method is proposed in the present study for FORM-based structural reliability analysis. A finite-step size is proposed using the Armijo rule and sufficient descent condition to achieve the stabilization of the FORM algorithm. The FAL is adaptively adjusted based on the information obtained from the iterative algorithm at each iteration and Armijo rule. The robustness and efficiency of the proposed FAL method is elucidated using several problems. The results obtained by the proposed method are compared with various existing reliability methods based on steepest descent search direction. The results of the numerical study indicate that the FAL approach is more robust and efficient than the other existing FORM schemes and improves the robustness of FORM formula. Thus, the FAL can be successfully implemented as a robust FORM-based iterative reliability analysis procedure.

Suggested Citation

  • Keshtegar, Behrooz & Chakraborty, Subrata, 2018. "An efficient-robust structural reliability method by adaptive finite-step length based on Armijo line search," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 195-206.
  • Handle: RePEc:eee:reensy:v:172:y:2018:i:c:p:195-206
    DOI: 10.1016/j.ress.2017.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017307561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Zhili & Wang, Jian & Li, Rui & Tong, Cao, 2017. "LIF: A new Kriging based learning function and its application to structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 152-165.
    2. Alban, Andres & Darji, Hardik A. & Imamura, Atsuki & Nakayama, Marvin K., 2017. "Efficient Monte Carlo methods for estimating failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 376-394.
    3. Jian, Wang & Zhili, Sun & Qiang, Yang & Rui, Li, 2017. "Two accuracy measures of the Kriging model for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 494-505.
    4. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    5. Xiao, Ning-Cong & Zuo, Ming J. & Zhou, Chengning, 2018. "A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 330-338.
    6. Dai, Hongzhe & Zhang, Hao & Wang, Wei, 2012. "A support vector density-based importance sampling for reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 86-93.
    7. Zhang, Z. & Jiang, C. & Wang, G.G. & Han, X., 2015. "First and second order approximate reliability analysis methods using evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 40-49.
    8. Echard, B. & Gayton, N. & Lemaire, M. & Relun, N., 2013. "A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 232-240.
    9. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    10. Cadini, F. & Santos, F. & Zio, E., 2014. "An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 109-117.
    11. Wen, Zhixun & Pei, Haiqing & Liu, Hai & Yue, Zhufeng, 2016. "A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 170-179.
    12. Song, Shufang & Lu, Zhenzhou & Qiao, Hongwei, 2009. "Subset simulation for structural reliability sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 658-665.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing, Zhao & Chen, Jianqiao & Li, Xu, 2019. "RBF-GA: An adaptive radial basis function metamodeling with genetic algorithm for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 42-57.
    2. Keshtegar, Behrooz & Kisi, Ozgur, 2018. "RM5Tree: Radial basis M5 model tree for accurate structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 49-61.
    3. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    4. Abdollahi, Azam & Amini, Ali & Hariri-Ardebili, Mohammad Amin, 2022. "An uncertainty-aware dynamic shape optimization framework: Gravity dam design," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Sheng-Tong Zhou & Di Wang & Qian Xiao & Jian-min Zhou & Hong-Guang Li & Wen-Bing Tu, 2021. "An improved first order reliability method based on modified Armijo rule and interpolation-based backtracking scheme," Journal of Risk and Reliability, , vol. 235(2), pages 209-229, April.
    6. Keshtegar, Behrooz & Chakraborty, Souvik, 2018. "Dynamical accelerated performance measure approach for efficient reliability-based design optimization with highly nonlinear probabilistic constraints," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 69-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    2. Wei, Pengfei & Liu, Fuchao & Tang, Chenghu, 2018. "Reliability and reliability-based importance analysis of structural systems using multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 183-195.
    3. Cheng, Kai & Lu, Zhenzhou, 2021. "Adaptive Bayesian support vector regression model for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    4. Li, Junxiang & Chen, Jianqiao, 2019. "Solving time-variant reliability-based design optimization by PSO-t-IRS: A methodology incorporating a particle swarm optimization algorithm and an enhanced instantaneous response surface," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Keshtegar, Behrooz & Kisi, Ozgur, 2018. "RM5Tree: Radial basis M5 model tree for accurate structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 49-61.
    6. Zhang, Xufang & Wang, Lei & Sørensen, John Dalsgaard, 2019. "REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 440-454.
    7. Xu, Jun & Kong, Fan, 2018. "A new unequal-weighted sampling method for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 94-102.
    8. Wang, Jinsheng & Xu, Guoji & Li, Yongle & Kareem, Ahsan, 2022. "AKSE: A novel adaptive Kriging method combining sampling region scheme and error-based stopping criterion for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Zhang, Jinhao & Xiao, Mi & Gao, Liang, 2019. "An active learning reliability method combining Kriging constructed with exploration and exploitation of failure region and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 90-102.
    10. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Chen, Weidong & Xu, Chunlong & Shi, Yaqin & Ma, Jingxin & Lu, Shengzhuo, 2019. "A hybrid Kriging-based reliability method for small failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 31-41.
    12. Jing, Zhao & Chen, Jianqiao & Li, Xu, 2019. "RBF-GA: An adaptive radial basis function metamodeling with genetic algorithm for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 42-57.
    13. Teixeira, Rui & Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan, 2021. "Reliability analysis using a multi-metamodel complement-basis approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Wang, Zeyu & Shafieezadeh, Abdollah, 2020. "On confidence intervals for failure probability estimates in Kriging-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    15. Xu, Jun & Wang, Ding, 2019. "Structural reliability analysis based on polynomial chaos, Voronoi cells and dimension reduction technique," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 329-340.
    16. Wang, Zeyu & Shafieezadeh, Abdollah, 2020. "Real-time high-fidelity reliability updating with equality information using adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    17. Jian, Wang & Zhili, Sun & Qiang, Yang & Rui, Li, 2017. "Two accuracy measures of the Kriging model for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 494-505.
    18. Chengning Zhou & Ning-Cong Xiao & Ming J Zuo & Xiaoxu Huang, 2020. "AK-PDF: An active learning method combining kriging and probability density function for efficient reliability analysis," Journal of Risk and Reliability, , vol. 234(3), pages 536-549, June.
    19. Wang, Zeyu & Shafieezadeh, Abdollah, 2019. "REAK: Reliability analysis through Error rate-based Adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 33-45.
    20. Ni, Pinghe & Li, Jun & Hao, Hong & Yan, Weimin & Du, Xiuli & Zhou, Hongyuan, 2020. "Reliability analysis and design optimization of nonlinear structures," Reliability Engineering and System Safety, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:172:y:2018:i:c:p:195-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.