IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v165y2017icp277-291.html
   My bibliography  Save this article

Adaptive surrogate model with active refinement combining Kriging and a trust region method

Author

Listed:
  • Gaspar, B.
  • Teixeira, A.P.
  • Guedes Soares, C.

Abstract

The reliability analysis of engineering structural systems with limit state functions defined implicitly by time-consuming numerical models (e.g. finite element analysis structural models) requires the use of efficient solution strategies in order to keep the required computational costs at acceptable levels. In this paper, an adaptive Kriging surrogate model with active refinement is proposed to solve component reliability assessment problems (i.e. involving one single design point) with nonlinear and time-consuming implicit limit state functions with a moderate number of input basic random variables. The proposed model, in the first stage, uses an adaptive Kriging-based trust region method to search for the design point in the standard Gaussian space and predict an initial failure probability based on the first-order reliability method as well as sensitivity factors for the input basic random variables. This initial prediction is then verified or improved efficiently in a second stage using Monte Carlo simulation with importance sampling based on a Kriging surrogate model defined iteratively around the design point using an active refinement algorithm. A convergence criterion that detects the stabilization of the failure probability prediction during the active refinement process is also proposed and implemented. The usefulness of the proposed adaptive Kriging surrogate model in terms of accuracy and efficiency for reliability assessment of engineering structural systems is shown in the paper with two relevant numerical examples, involving a highly nonlinear analytical limit state function in two-dimensions and an advanced nonlinear finite element analysis structural model in a larger dimensional space.

Suggested Citation

  • Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
  • Handle: RePEc:eee:reensy:v:165:y:2017:i:c:p:277-291
    DOI: 10.1016/j.ress.2017.03.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016301892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.03.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cremona, Marzia A. & Liu, Binbin & Hu, Yang & Bruni, Stefano & Lewis, Roger, 2016. "Predicting railway wheel wear under uncertainty of wear coefficient, using universal kriging," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 49-59.
    2. Perrin, G., 2016. "Active learning surrogate models for the conception of systems with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 130-136.
    3. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    4. Bichon, Barron J. & McFarland, John M. & Mahadevan, Sankaran, 2011. "Efficient surrogate models for reliability analysis of systems with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1386-1395.
    5. Fauriat, W. & Gayton, N., 2014. "AK-SYS: An adaptation of the AK-MCS method for system reliability," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 137-144.
    6. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    7. Bourinet, J.-M., 2016. "Rare-event probability estimation with adaptive support vector regression surrogates," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 210-221.
    8. Nannapaneni, Saideep & Mahadevan, Sankaran, 2016. "Reliability analysis under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 9-20.
    9. Echard, B. & Gayton, N. & Lemaire, M. & Relun, N., 2013. "A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 232-240.
    10. Shi, Lei & Lin, Shih-Po, 2016. "A new RBDO method using adaptive response surface and first-order score function for crashworthiness design," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 125-133.
    11. Cadini, F. & Santos, F. & Zio, E., 2014. "An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 109-117.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Qing & Liu, Yongshou & Chen, Bingqian & Yao, Qin, 2021. "A variable and mode sensitivity analysis method for structural system using a novel active learning Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    2. Menz, Morgane & Gogu, Christian & Dubreuil, Sylvain & Bartoli, Nathalie & Morio, Jérôme, 2020. "Adaptive coupling of reduced basis modeling and Kriging based active learning methods for reliability analyses," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    3. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Jian, Wang & Zhili, Sun & Qiang, Yang & Rui, Li, 2017. "Two accuracy measures of the Kriging model for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 494-505.
    5. Wei, Pengfei & Liu, Fuchao & Tang, Chenghu, 2018. "Reliability and reliability-based importance analysis of structural systems using multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 183-195.
    6. Li, Meng & Sadoughi, Mohammadkazem & Hu, Zhen & Hu, Chao, 2020. "A hybrid Gaussian process model for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    7. Xu, Jun & Wang, Ding, 2019. "Structural reliability analysis based on polynomial chaos, Voronoi cells and dimension reduction technique," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 329-340.
    8. Wang, Zeyu & Shafieezadeh, Abdollah, 2020. "Real-time high-fidelity reliability updating with equality information using adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Sun, Zhili & Wang, Jian & Li, Rui & Tong, Cao, 2017. "LIF: A new Kriging based learning function and its application to structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 152-165.
    10. Zhang, Yu & Dong, You & Xu, Jun, 2023. "An accelerated active learning Kriging model with the distance-based subdomain and a new stopping criterion for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Wang, Jian & Sun, Zhili & Cao, Runan, 2021. "An efficient and robust Kriging-based method for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Yang, Xufeng & Liu, Yongshou & Mi, Caiying & Tang, Chenghu, 2018. "System reliability analysis through active learning Kriging model with truncated candidate region," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 235-241.
    13. Chen, Weidong & Xu, Chunlong & Shi, Yaqin & Ma, Jingxin & Lu, Shengzhuo, 2019. "A hybrid Kriging-based reliability method for small failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 31-41.
    14. Jing, Zhao & Chen, Jianqiao & Li, Xu, 2019. "RBF-GA: An adaptive radial basis function metamodeling with genetic algorithm for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 42-57.
    15. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    16. Yang, Seonghyeok & Lee, Mingyu & Lee, Ikjin, 2023. "A new sampling approach for system reliability-based design optimization under multiple simulation models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Yang, Seonghyeok & Jo, Hwisang & Lee, Kyungeun & Lee, Ikjin, 2022. "Expected system improvement (ESI): A new learning function for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    18. Zhao, Wei & Fan, Feng & Wang, Wei, 2017. "Non-linear partial least squares response surface method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 69-77.
    19. Zhan, Hongyou & Xiao, Ning-Cong & Ji, Yuxiang, 2022. "An adaptive parallel learning dependent Kriging model for small failure probability problems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    20. Cao, Runan & Sun, Zhili & Wang, Jian & Guo, Fanyi, 2022. "A single-loop reliability analysis strategy for time-dependent problems with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:165:y:2017:i:c:p:277-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.