IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v244y2024ics0951832024000280.html
   My bibliography  Save this article

Refined parallel adaptive Bayesian quadrature for estimating small failure probabilities

Author

Listed:
  • Wang, Lei
  • Hu, Zhuo
  • Dang, Chao
  • Beer, Michael

Abstract

Bayesian active learning methods have emerged for structural reliability analysis, showcasing more attractive features compared to existing active learning methods. The parallel adaptive Bayesian quadrature (PABQ) method, as a representative of them, allows to efficiently assessing small failure probabilities but faces the problem of empirically specifying several important parameters. The unreasonable parameter settings could lead to the inaccurate estimates of failure probability or the non-convergence of active learning. This study proposes a refined PABQ (R-PABQ) method by presenting three novel refinements to overcome the drawbacks of PABQ. Firstly, a sequential population enrichment strategy is presented and embedded into the importance ball sampling technique to solve the computer memory problem when involving large sample population. Secondly, an adaptive determination strategy for radius is developed to automatically adjust the sampling region during the active learning procedure. Lastly, an adaptive multi-point selection method is proposed to identify a batch of points to enable parallel computing. The effectiveness of the proposed R-PABQ method is demonstrated by four numerical examples. Results show that the proposed method can estimate small failure probabilities (e.g., 10−7∼10−9) with superior accuracy and efficiency over several existing active learning reliability methods.

Suggested Citation

  • Wang, Lei & Hu, Zhuo & Dang, Chao & Beer, Michael, 2024. "Refined parallel adaptive Bayesian quadrature for estimating small failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000280
    DOI: 10.1016/j.ress.2024.109953
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024000280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.109953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.