IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v200y2020ics0951832019302686.html
   My bibliography  Save this article

Probabilistic Petri-net addition enabling decision making depending on situational change: The case of emergency response to fuel tank farm fire

Author

Listed:
  • Zhou, Jianfeng
  • Reniers, Genserik

Abstract

Emergency response was usually not taken into account in the analysis of safety barriers to prevent fire-induced domino effects. When emergency response is considered, in addition to failure events, successful events may also have an impact on fire escalation, and there may be a dependency between pre- and post-events. To model such events and carry out probability analysis, a probabilistic Petri-net (PPN) approach is proposed. The definition of a PPN with the complementary arc and its execution mechanism are provided, and a probability reasoning algorithm reflecting the parallel processing of PPNs is developed. On this basis, a PPN model discussed in two parts for failure analysis of fire escalation prevention is established. The application of the methodology is demonstrated by fire prevention in a chemical storage tank farm, focusing on the influence of fire detection on follow-up actions. In addition to that the fire is not been found, the time at which the fire is found will also have an impact on the success of preventing the fire escalation. The influences of not considering/considering fire detection time are analyzed by the fault tree method and the PPN method, respectively, and there is a difference of about 11% between the results.

Suggested Citation

  • Zhou, Jianfeng & Reniers, Genserik, 2020. "Probabilistic Petri-net addition enabling decision making depending on situational change: The case of emergency response to fuel tank farm fire," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:reensy:v:200:y:2020:i:c:s0951832019302686
    DOI: 10.1016/j.ress.2020.106880
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019302686
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nima Khakzad & Faisal Khan & Paul Amyotte & Valerio Cozzani, 2013. "Domino Effect Analysis Using Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 292-306, February.
    2. Landucci, Gabriele & Argenti, Francesca & Tugnoli, Alessandro & Cozzani, Valerio, 2015. "Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 30-43.
    3. Hemmatian, Behrouz & Planas, Eulà lia & Casal, Joaquim, 2015. "Fire as a primary event of accident domino sequences: The case of BLEVE," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 141-148.
    4. Khakzad, Nima & Landucci, Gabriele & Cozzani, Valerio & Reniers, Genserik & Pasman, Hans, 2018. "Cost-effective fire protection of chemical plants against domino effects," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 412-421.
    5. Janssens, Jochen & Talarico, Luca & Reniers, Genserik & Sörensen, Kenneth, 2015. "A decision model to allocate protective safety barriers and mitigate domino effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 44-52.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Lixing & Chen, Guohua & Zheng, Mianbin & Gao, Xiaoming & Luo, Chennan & Rao, Xiaohui, 2024. "Agent-based modeling methodology and temporal simulation for Natech events in chemical clusters," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Xie, Shuyi & Dong, Shaohua & Chen, Yinuo & Peng, Yujie & Li, Xincai, 2021. "A novel risk evaluation method for fire and explosion accidents in oil depots using bow-tie analysis and risk matrix analysis method based on cloud model theory," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Yan, Rundong & Dunnett, Sarah & Andrews, John, 2023. "A Petri net model-based resilience analysis of nuclear power plants under the threat of natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Zhou, Jianfeng & Reniers, Genserik & Cozzani, Valerio, 2023. "A Petri-net approach for firefighting force allocation analysis of fire emergency response with backups," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Chen, Chao & Reniers, Genserik & Khakzad, Nima, 2021. "A dynamic multi-agent approach for modeling the evolution of multi-hazard accident scenarios in chemical plants," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Liu, Qiong & He, Renfei & Zhang, Limao, 2022. "Simulation-based multi-objective optimization for enhanced safety of fire emergency response in metro stations," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Yan, R. & Dunnett, S.J. & Jackson, L.M., 2022. "Model-Based Research for Aiding Decision-Making During the Design and Operation of Multi-Load Automated Guided Vehicle Systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Yılmaz, Emre & German, Brian J. & Pritchett, Amy R., 2023. "Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Zhou, Jianfeng & Reniers, Genserik, 2022. "Petri-net based cooperation modeling and time analysis of emergency response in the context of domino effect prevention in process industries," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    11. Sun, Qinying & Ma, Haiqun, 2024. "Modelling and performance analysis of the COVID-19 emergency collaborative process based on a stochastic Petri net," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Li, Xiaofeng & Chen, Guohua & Amyotte, Paul & Khan, Faisal & Alauddin, Mohammad, 2023. "Vulnerability assessment of storage tanks exposed to simultaneous fire and explosion hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Liu, Shuanglei & Li, Weijun & Gao, Peng & Sun, Yibo, 2022. "Modeling and performance analysis of gas leakage emergency disposal process in gas transmission station based on Stochastic Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khakzad, Nima, 2021. "Optimal firefighting to prevent domino effects: Methodologies based on dynamic influence diagram and mathematical programming," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. Guo, Xiaoxue & Ding, Long & Ji, Jie & Cozzani, Valerio, 2022. "A cost-effective optimization model of safety investment allocation for risk reduction of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Khakzad, Nima, 2023. "A goal programming approach to multi-objective optimization of firefighting strategies in the event of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    5. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    6. Martin Folch-Calvo & Francisco Brocal-Fernández & Cristina González-Gaya & Miguel A. Sebastián, 2020. "Analysis and Characterization of Risk Methodologies Applied to Industrial Parks," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    7. Xie, Lin & Lundteigen, Mary Ann & Liu, Yiliu, 2021. "Performance analysis of safety instrumented systems against cascading failures during prolonged demands," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Nima Khakzad & Gabriele Landucci & Genserik Reniers, 2017. "Application of Graph Theory to Cost‐Effective Fire Protection of Chemical Plants During Domino Effects," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1652-1667, September.
    9. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Lin Xie & Mary Ann Lundteigen & Yiliu Liu, 2020. "Reliability and barrier assessment of series–parallel systems subject to cascading failures," Journal of Risk and Reliability, , vol. 234(3), pages 455-469, June.
    11. Ovidi, Federica & Zhang, Laobing & Landucci, Gabriele & Reniers, Genserik, 2021. "Agent-based model and simulation of mitigated domino scenarios in chemical tank farms," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    12. Hou, Lei & Wu, Xingguang & Wu, Zhuang & Wu, Shouzhi, 2020. "Pattern identification and risk prediction of domino effect based on data mining methods for accidents occurred in the tank farm," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agent‐Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.
    14. Ding, Long & Khan, Faisal & Abbassi, Rouzbeh & Ji, Jie, 2019. "FSEM: An approach to model contribution of synergistic effect of fires for domino effects," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 271-278.
    15. Singh, Kritika & Maiti, J, 2020. "A novel data mining approach for analysis of accident paths and performance assessment of risk control systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    16. Casson Moreno, Valeria & Guglielmi, Daniele & Cozzani, Valerio, 2018. "Identification of critical safety barriers in biogas facilities," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 81-94.
    17. Jianfeng Zhou & Genserik Reniers, 2020. "Probabilistic Analysis of Domino Effects by Using a Matrix‐Based Simulation Approach," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1913-1927, October.
    18. Nima Khakzad, 2018. "A Graph Theoretic Approach to Optimal Firefighting in Oil Terminals," Energies, MDPI, vol. 11(11), pages 1-14, November.
    19. Zhou, Jianfeng & Reniers, Genserik & Cozzani, Valerio, 2023. "A Petri-net approach for firefighting force allocation analysis of fire emergency response with backups," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part II—Risk Assessment and Mitigation System," Sustainability, MDPI, vol. 15(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:200:y:2020:i:c:s0951832019302686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.