IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v212y2021ics0951832021001757.html
   My bibliography  Save this article

Assessment of risk modification due to safety barrier performance degradation in Natech events

Author

Listed:
  • Misuri, Alessio
  • Landucci, Gabriele
  • Cozzani, Valerio

Abstract

Natural hazards may cause severe technological accidents involving hazardous substances (Natech accidents). Along with process equipment also safety critical elements as safety barriers might be impacted by such events, thus reducing the protection provided and the possibility to prevent escalation and cascading effects. In the present study a comprehensive methodology is developed to address the quantitative assessment of the risk caused by the escalation of Natech accidents, specifically addressing the effect of the performance modification of safety barriers caused by the impact of the natural hazard. Barrier performance depletion is modelled through an innovative multi-level approach, and it is then introduced in the quantitative risk assessment procedure by a modified event tree analysis. A demonstrative application of the proposed methodology to a case study is provided, showing a relevant increase in risk figures deriving from the degradation of safety barrier performance caused by natural events. The proposed framework extends the systemic assessment of Natech scenarios to encompass the specific criticalities introduced by safety barrier performance modification induced by natural events, providing a more effective support to decision-making in the management and control of risk deriving from the interaction of natural hazards with technological installations.

Suggested Citation

  • Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001757
    DOI: 10.1016/j.ress.2021.107634
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021001757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elisabeth Krausmann & Elisabetta Renni & Michela Campedel & Valerio Cozzani, 2011. "Industrial accidents triggered by earthquakes, floods and lightning: lessons learned from a database analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 285-300, October.
    2. Khakzad, Nima & Cozzani, Valerio, 2020. "Special issue: Quantitative assessment and risk management of Natech accidents," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    3. Nima Khakzad & Faisal Khan & Paul Amyotte & Valerio Cozzani, 2013. "Domino Effect Analysis Using Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 292-306, February.
    4. Necci, Amos & Argenti, Francesca & Landucci, Gabriele & Cozzani, Valerio, 2014. "Accident scenarios triggered by lightning strike on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 30-46.
    5. Yang, Yunfeng & Chen, Guohua & Reniers, Genserik, 2020. "Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. George E. Apostolakis, 2004. "How Useful Is Quantitative Risk Assessment?," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 515-520, June.
    7. Antonioni, Giacomo & Bonvicini, Sarah & Spadoni, Gigliola & Cozzani, Valerio, 2009. "Development of a framework for the risk assessment of Na-Tech accidental events," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1442-1450.
    8. Elisabeth Krausmann & Ana Cruz, 2013. "Impact of the 11 March 2011, Great East Japan earthquake and tsunami on the chemical industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 811-828, June.
    9. Landucci, Gabriele & Antonioni, Giacomo & Tugnoli, Alessandro & Cozzani, Valerio, 2012. "Release of hazardous substances in flood events: Damage model for atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 200-216.
    10. Misuri, Alessio & Casson Moreno, Valeria & Quddus, Noor & Cozzani, Valerio, 2019. "Lessons learnt from the impact of hurricane Harvey on the chemical and process industry," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    11. Necci, Amos & Cozzani, Valerio & Spadoni, Gigliola & Khan, Faisal, 2015. "Assessment of domino effect: State of the art and research Needs," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 3-18.
    12. Salzano, Ernesto & Garcia Agreda, Anita & Di Carluccio, Antonio & Fabbrocino, Giovanni, 2009. "Risk assessment and early warning systems for industrial facilities in seismic zones," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1577-1584.
    13. Elisabeth Krausmann & Fesil Mushtaq, 2008. "A qualitative Natech damage scale for the impact of floods on selected industrial facilities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(2), pages 179-197, August.
    14. Gao, Xueli & Barabady, Javad & Markeset, Tore, 2010. "An approach for prediction of petroleum production facility performance considering Arctic influence factors," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 837-846.
    15. Khakzad, Nima & Reniers, Genserik, 2015. "Using graph theory to analyze the vulnerability of process plants in the context of cascading effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 63-73.
    16. Michela Campedel & Valerio Cozzani & Anita Garcia‐Agreda & Ernesto Salzano, 2008. "Extending the Quantitative Assessment of Industrial Risks to Earthquake Effects," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1231-1246, October.
    17. Duijm, Nijs Jan, 2009. "Safety-barrier diagrams as a safety management tool," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 332-341.
    18. Khakzad, Nima, 2019. "Modeling wildfire spread in wildland-industrial interfaces using dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 165-176.
    19. Olivar, Oscar J. Ramírez & Mayorga, Santiago Zuluaga & Giraldo, Felipe Muñoz & Sánchez-Silva, Mauricio & Pinelli, Jean-Paul & Salzano, Ernesto, 2020. "The effects of extreme winds on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    20. Alileche, Nassim & Cozzani, Valerio & Reniers, Genserik & Estel, Lionel, 2015. "Thresholds for domino effects and safety distances in the process industry: A review of approaches and regulations," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 74-84.
    21. Landucci, Gabriele & Necci, Amos & Antonioni, Giacomo & Tugnoli, Alessandro & Cozzani, Valerio, 2014. "Release of hazardous substances in flood events: Damage model for horizontal cylindrical vessels," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 125-145.
    22. Landucci, Gabriele & Necci, Amos & Antonioni, Giacomo & Argenti, Francesca & Cozzani, Valerio, 2017. "Risk assessment of mitigated domino scenarios in process facilities," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 37-53.
    23. Khakzad, Nima & Van Gelder, Pieter, 2018. "Vulnerability of industrial plants to flood-induced natechs: A Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 403-411.
    24. Landucci, Gabriele & Argenti, Francesca & Tugnoli, Alessandro & Cozzani, Valerio, 2015. "Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 30-43.
    25. Necci, Amos & Antonioni, Giacomo & Cozzani, Valerio & Krausmann, Elisabeth & Borghetti, Alberto & Nucci, Carlo Alberto, 2014. "Assessment of lightning impact frequency for process equipment," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 95-105.
    26. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    27. Antonioni, Giacomo & Landucci, Gabriele & Necci, Amos & Gheorghiu, Diana & Cozzani, Valerio, 2015. "Quantitative assessment of risk due to NaTech scenarios caused by floods," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 334-345.
    28. Khakzad, Nima & Landucci, Gabriele & Reniers, Genserik, 2017. "Application of dynamic Bayesian network to performance assessment of fire protection systems during domino effects," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 232-247.
    29. Bernier, Carl & Padgett, Jamie E., 2019. "Fragility and risk assessment of aboveground storage tanks subjected to concurrent surge, wave, and wind loads," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    30. Khakzad, Nima, 2015. "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 263-272.
    31. Necci, Amos & Antonioni, Giacomo & Cozzani, Valerio & Krausmann, Elisabeth & Borghetti, Alberto & Alberto Nucci, Carlo, 2013. "A model for process equipment damage probability assessment due to lightning," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 91-99.
    32. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2020. "Assessment of safety barrier performance in Natech scenarios," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    33. Janssens, Jochen & Talarico, Luca & Reniers, Genserik & Sörensen, Kenneth, 2015. "A decision model to allocate protective safety barriers and mitigate domino effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 44-52.
    34. Nima Khakzad & Gabriele Landucci & Genserik Reniers, 2017. "Application of Graph Theory to Cost‐Effective Fire Protection of Chemical Plants During Domino Effects," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1652-1667, September.
    35. Ernesto Salzano & Anna Basco & Valentina Busini & Valerio Cozzani & Enrico Marzo & Renato Rota & Gigliola Spadoni, 2013. "Public awareness promoting new or emerging risks: Industrial accidents triggered by natural hazards (NaTech)," Journal of Risk Research, Taylor & Francis Journals, vol. 16(3-4), pages 469-485, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Rossi, Lorenzo & Casson Moreno, Valeria & Landucci, Gabriele, 2022. "Vulnerability assessment of process pipelines affected by flood events," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part II—Risk Assessment and Mitigation System," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    4. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Di Maio, Francesco & Marchetti, Stefano & Zio, Enrico, 2023. "Robust multi-objective optimization of safety barriers performance parameters for NaTech scenarios risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Jiajun Ma & Guohua Chen & Tao Zeng & Lixing Zhou & Jie Zhao & Yuanfei Zhao, 2023. "Methodology for Resilience Assessment of Oil Pipeline Network System Exposed to Earthquake," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    7. Weiliang Qiao & Enze Huang & Hongtongyang Guo & Yang Liu & Xiaoxue Ma, 2022. "Barriers Involved in the Safety Management Systems: A Systematic Review of Literature," IJERPH, MDPI, vol. 19(15), pages 1-35, August.
    8. Casson Moreno, Valeria & Marroni, Giulia & Landucci, Gabriele, 2022. "Probabilistic assessment aimed at the evaluation of escalating scenarios in process facilities combining safety and security barriers," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    9. Yuan, Shuaiqi & Cai, Jitao & Reniers, Genserik & Yang, Ming & Chen, Chao & Wu, Jiansong, 2022. "Safety barrier performance assessment by integrating computational fluid dynamics and evacuation modeling for toxic gas leakage scenarios," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    2. Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part II—Risk Assessment and Mitigation System," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    5. Yang, Yunfeng & Chen, Guohua & Reniers, Genserik, 2020. "Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. Rossi, Lorenzo & Casson Moreno, Valeria & Landucci, Gabriele, 2022. "Vulnerability assessment of process pipelines affected by flood events," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part I—Failure Analysis," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    8. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2020. "Assessment of safety barrier performance in Natech scenarios," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Tao Zeng & Guohua Chen & Yunfeng Yang & Genserik Reniers & Yixin Zhao & Xia Liu, 2020. "A Systematic Literature Review on Safety Research Related to Chemical Industrial Parks," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    10. Guo, Xiaoxue & Ding, Long & Ji, Jie & Cozzani, Valerio, 2022. "A cost-effective optimization model of safety investment allocation for risk reduction of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Weiliang Qiao & Enze Huang & Hongtongyang Guo & Yang Liu & Xiaoxue Ma, 2022. "Barriers Involved in the Safety Management Systems: A Systematic Review of Literature," IJERPH, MDPI, vol. 19(15), pages 1-35, August.
    12. Antonioni, Giacomo & Landucci, Gabriele & Necci, Amos & Gheorghiu, Diana & Cozzani, Valerio, 2015. "Quantitative assessment of risk due to NaTech scenarios caused by floods," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 334-345.
    13. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Khakzad, Nima & Van Gelder, Pieter, 2018. "Vulnerability of industrial plants to flood-induced natechs: A Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 403-411.
    16. Nima Khakzad & Gabriele Landucci & Genserik Reniers, 2017. "Application of Graph Theory to Cost‐Effective Fire Protection of Chemical Plants During Domino Effects," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1652-1667, September.
    17. Landucci, Gabriele & Necci, Amos & Antonioni, Giacomo & Argenti, Francesca & Cozzani, Valerio, 2017. "Risk assessment of mitigated domino scenarios in process facilities," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 37-53.
    18. Ovidi, Federica & Zhang, Laobing & Landucci, Gabriele & Reniers, Genserik, 2021. "Agent-based model and simulation of mitigated domino scenarios in chemical tank farms," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    19. Hou, Lei & Wu, Xingguang & Wu, Zhuang & Wu, Shouzhi, 2020. "Pattern identification and risk prediction of domino effect based on data mining methods for accidents occurred in the tank farm," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    20. Necci, Amos & Antonioni, Giacomo & Bonvicini, Sarah & Cozzani, Valerio, 2016. "Quantitative assessment of risk due to major accidents triggered by lightning," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 60-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.