IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v191y2019ics0951832019302339.html
   My bibliography  Save this article

Fragility and risk assessment of aboveground storage tanks subjected to concurrent surge, wave, and wind loads

Author

Listed:
  • Bernier, Carl
  • Padgett, Jamie E.

Abstract

Comprehensive tools to assess the performance of aboveground storage tanks (ASTs) under multi-hazard storm conditions are currently lacking, despite the severe damage suffered by ASTs in past storms resulting in the release of hazardous substances. This paper presents a rigorous yet efficient methodology to develop fragility models and perform risk assessments of ASTs subjected to combined surge, wave, and wind loads. Parametrized fragility models are derived for buckling and dislocation from the ground. The buckling strength of ASTs is assessed using finite element analysis, while the stability against dislocation is evaluated using analytical limit state functions with surrogate modeling-based load models. Scenario and probabilistic risk assessments are then performed for a case study region by convolving the fragility models with hazard models. Results demonstrate that the derived fragility models are efficient tools to evaluate the performance of ASTs in industrial regions. Insights obtained from the fragility and risk assessments reveal that neglecting the multi-hazard nature of storms, as existing studies have done, can lead to a significant underestimation of vulnerability and risks. This paper also highlights how using surrogate model techniques can facilitate and reduce the computational complexity of fragility and risk assessments, particularly in multi-hazard settings.

Suggested Citation

  • Bernier, Carl & Padgett, Jamie E., 2019. "Fragility and risk assessment of aboveground storage tanks subjected to concurrent surge, wave, and wind loads," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:reensy:v:191:y:2019:i:c:s0951832019302339
    DOI: 10.1016/j.ress.2019.106571
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019302339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Landucci, Gabriele & Antonioni, Giacomo & Tugnoli, Alessandro & Cozzani, Valerio, 2012. "Release of hazardous substances in flood events: Damage model for atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 200-216.
    2. Ana Cruz & Elisabeth Krausmann, 2013. "Vulnerability of the oil and gas sector to climate change and extreme weather events," Climatic Change, Springer, vol. 121(1), pages 41-53, November.
    3. Khakzad, Nima & Van Gelder, Pieter, 2018. "Vulnerability of industrial plants to flood-induced natechs: A Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 403-411.
    4. Antonioni, Giacomo & Landucci, Gabriele & Necci, Amos & Gheorghiu, Diana & Cozzani, Valerio, 2015. "Quantitative assessment of risk due to NaTech scenarios caused by floods," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 334-345.
    5. Wei, K. & Arwade, S.R. & Myers, A.T. & Hallowell, S. & Hajjar, J.F. & Hines, E.M. & Pang, W., 2016. "Toward performance-based evaluation for offshore wind turbine jacket support structures," Renewable Energy, Elsevier, vol. 97(C), pages 709-721.
    6. Zuluaga Mayorga, Santiago & Sánchez-Silva, Mauricio & Ramírez Olivar, Oscar J. & Muñoz Giraldo, Felipe, 2019. "Development of parametric fragility curves for storage tanks: A Natech approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 1-10.
    7. Necci, Amos & Antonioni, Giacomo & Bonvicini, Sarah & Cozzani, Valerio, 2016. "Quantitative assessment of risk due to major accidents triggered by lightning," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 60-72.
    8. Necci, Amos & Antonioni, Giacomo & Cozzani, Valerio & Krausmann, Elisabeth & Borghetti, Alberto & Alberto Nucci, Carlo, 2013. "A model for process equipment damage probability assessment due to lightning," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 91-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yunfeng & Chen, Guohua & Reniers, Genserik, 2020. "Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    2. Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Kishore, Katchalla Bala & Gangolu, Jaswanth & Ramancha, Mukesh K. & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    4. Rossi, Lorenzo & Casson Moreno, Valeria & Landucci, Gabriele, 2022. "Vulnerability assessment of process pipelines affected by flood events," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Lan, Meng & Gardoni, Paolo & Qin, Rongshui & Zhang, Xiao & Zhu, Jiping & Lo, Siuming, 2022. "Modeling NaTech-related domino effects in process clusters: A network-based approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    7. Yuan Chen & Zhijie Zhou & Lihao Yang & Guanyu Hu & Xiaoxia Han & Shuaiwen Tang, 2022. "A novel structural safety assessment method of large liquid tank based on the belief rule base and finite element method," Journal of Risk and Reliability, , vol. 236(3), pages 458-476, June.
    8. Lan, Meng & Gardoni, Paolo & Weng, Wenguo & Shen, Kaixin & He, Zhichao & Pan, Rongliang, 2024. "Modeling the evolution of industrial accidents triggered by natural disasters using dynamic graphs: A case study of typhoon-induced domino accidents in storage tank areas," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    10. Shen, Zhonghui & Wei, Kai, 2021. "Stochastic model of tropical cyclones along China coast including the effects of spatial heterogeneity and ocean feedback," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Yang, Yunfeng & Chen, Guohua & Reniers, Genserik, 2020. "Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    3. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Khakzad, Nima & Van Gelder, Pieter, 2018. "Vulnerability of industrial plants to flood-induced natechs: A Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 403-411.
    5. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    6. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    7. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Rossi, Lorenzo & Casson Moreno, Valeria & Landucci, Gabriele, 2022. "Vulnerability assessment of process pipelines affected by flood events," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Bernier, Carl & Gidaris, Ioannis & Balomenos, Georgios P. & Padgett, Jamie E., 2019. "Assessing the accessibility of petrochemical facilities during storm surge events," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 155-167.
    10. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part II—Risk Assessment and Mitigation System," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    11. Necci, Amos & Antonioni, Giacomo & Cozzani, Valerio & Krausmann, Elisabeth & Borghetti, Alberto & Nucci, Carlo Alberto, 2014. "Assessment of lightning impact frequency for process equipment," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 95-105.
    12. Landucci, Gabriele & Necci, Amos & Antonioni, Giacomo & Tugnoli, Alessandro & Cozzani, Valerio, 2014. "Release of hazardous substances in flood events: Damage model for horizontal cylindrical vessels," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 125-145.
    13. Zuluaga Mayorga, Santiago & Sánchez-Silva, Mauricio & Ramírez Olivar, Oscar J. & Muñoz Giraldo, Felipe, 2019. "Development of parametric fragility curves for storage tanks: A Natech approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 1-10.
    14. Gong, Yu & Liu, Pan & Zhang, Jun & Liu, Dedi & Zhang, Xiaoqi & Zhang, Xiaojing, 2020. "Considering different streamflow forecast horizons in the quantitative flood risk analysis for a multi-reservoir system," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    15. Tao Zeng & Guohua Chen & Yunfeng Yang & Genserik Reniers & Yixin Zhao & Xia Liu, 2020. "A Systematic Literature Review on Safety Research Related to Chemical Industrial Parks," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    16. Di Maio, F. & Belotti, M. & Volpe, M. & Selva, J. & Zio, E., 2022. "Parallel density scanned adaptive Kriging to improve local tsunami hazard assessment for coastal infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Necci, Amos & Argenti, Francesca & Landucci, Gabriele & Cozzani, Valerio, 2014. "Accident scenarios triggered by lightning strike on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 30-46.
    18. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part I—Failure Analysis," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    19. Necci, Amos & Antonioni, Giacomo & Bonvicini, Sarah & Cozzani, Valerio, 2016. "Quantitative assessment of risk due to major accidents triggered by lightning," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 60-72.
    20. Chaofeng Shao & Juan Yang & Xiaogang Tian & Meiting Ju & Lei Huang, 2013. "Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks," IJERPH, MDPI, vol. 10(4), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:191:y:2019:i:c:s0951832019302339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.