IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v188y2019icp155-167.html
   My bibliography  Save this article

Assessing the accessibility of petrochemical facilities during storm surge events

Author

Listed:
  • Bernier, Carl
  • Gidaris, Ioannis
  • Balomenos, Georgios P.
  • Padgett, Jamie E.

Abstract

Recent hurricane events have exposed the susceptibility of petrochemical facilities to severe transportation network disruptions due to flooding or storm surge. Network disruptions can result in cascading impacts or amplify the consequences of damage to petrochemical infrastructure due to delayed emergency response and limited access to the site. This study presents a scenario-based framework to assess the accessibility of petrochemical facilities by emergency responders and workers during storm surge events. First, the framework couples storm surge modeling with aboveground storage tank fragility models to determine the locations where natural hazard-triggered technological (NaTech) events could occur. Then, storm surge modeling is coupled with bridge fragility models and geographic system analysis to evaluate the potential for network disruptions such as bridge failures and road inundations. Finally, probabilistic network analyses are performed to evaluate the time-evolving accessibility of NaTech sites to emergency responders and facility workers. As a proof of concept, the framework is applied to a case study area. Results for the case study area demonstrate that the proposed framework is a powerful tool to quantify the accessibility of potential NaTech events, facilitate mitigation and emergency activities, and improve the management of critical resources and personnel during and after a storm.

Suggested Citation

  • Bernier, Carl & Gidaris, Ioannis & Balomenos, Georgios P. & Padgett, Jamie E., 2019. "Assessing the accessibility of petrochemical facilities during storm surge events," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 155-167.
  • Handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:155-167
    DOI: 10.1016/j.ress.2019.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018311748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana Cruz & Norio Okada, 2008. "Methodology for preliminary assessment of Natech risk in urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(2), pages 199-220, August.
    2. Landucci, Gabriele & Antonioni, Giacomo & Tugnoli, Alessandro & Cozzani, Valerio, 2012. "Release of hazardous substances in flood events: Damage model for atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 200-216.
    3. Adriana Galderisi & Andrea Ceudech & Massimiliano Pistucci, 2008. "A method for na-tech risk assessment as supporting tool for land use planning mitigation strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(2), pages 221-241, August.
    4. Ana Cruz & Elisabeth Krausmann, 2013. "Vulnerability of the oil and gas sector to climate change and extreme weather events," Climatic Change, Springer, vol. 121(1), pages 41-53, November.
    5. Khakzad, Nima & Van Gelder, Pieter, 2018. "Vulnerability of industrial plants to flood-induced natechs: A Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 403-411.
    6. Nicholas Santella & Laura J. Steinberg & Gloria Andrea Aguirra, 2011. "Empirical Estimation of the Conditional Probability of Natech Events Within the United States," Risk Analysis, John Wiley & Sons, vol. 31(6), pages 951-968, June.
    7. Nicholas Santella & Laura J. Steinberg & Hatice Sengul, 2010. "Petroleum and Hazardous Material Releases from Industrial Facilities Associated with Hurricane Katrina," Risk Analysis, John Wiley & Sons, vol. 30(4), pages 635-649, April.
    8. Maurice Pollack & Walter Wiebenson, 1960. "Solutions of the Shortest-Route Problem---A Review," Operations Research, INFORMS, vol. 8(2), pages 224-230, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Qingxue & Guo, Xiaodong & Li, Jichao & Wang, Tao, 2022. "Post-earthquake health care service accessibility assessment framework and its application in a medium-sized city," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Zhou, Jianfeng & Reniers, Genserik, 2022. "Petri-net based cooperation modeling and time analysis of emergency response in the context of domino effect prevention in process industries," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Khakzad, Nima & Cozzani, Valerio, 2020. "Special issue: Quantitative assessment and risk management of Natech accidents," Reliability Engineering and System Safety, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Bernier, Carl & Padgett, Jamie E., 2019. "Fragility and risk assessment of aboveground storage tanks subjected to concurrent surge, wave, and wind loads," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    4. Nicholas Santella, 2023. "Climate related trends in US hazardous material releases caused by natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 735-756, January.
    5. Pilone, E. & Demichela, M., 2018. "A semi-quantitative methodology to evaluate the main local territorial risks and their interactions," Land Use Policy, Elsevier, vol. 77(C), pages 143-154.
    6. Zuluaga Mayorga, Santiago & Sánchez-Silva, Mauricio & Ramírez Olivar, Oscar J. & Muñoz Giraldo, Felipe, 2019. "Development of parametric fragility curves for storage tanks: A Natech approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 1-10.
    7. Rossi, Lorenzo & Casson Moreno, Valeria & Landucci, Gabriele, 2022. "Vulnerability assessment of process pipelines affected by flood events," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    9. Marzo, E. & Busini, V. & Rota, R., 2015. "Definition of a short-cut methodology for assessing the vulnerability of a territory in natural–technological risk estimation," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 92-97.
    10. Tiezhong Liu & Hubo Zhang & Xiaowei Li & Haiyan Li, 2017. "Effects of organization factors on flood-related Natechs in urban areas of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 355-365, August.
    11. José Carlos de Moura Xavier & Wilson Cabral Sousa Junior, 2016. "Recognising na-tech events in Brazil: moving forward," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 493-506, May.
    12. Yang, Yunfeng & Chen, Guohua & Reniers, Genserik, 2020. "Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    13. Necci, Amos & Argenti, Francesca & Landucci, Gabriele & Cozzani, Valerio, 2014. "Accident scenarios triggered by lightning strike on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 30-46.
    14. Misuri, Alessio & Casson Moreno, Valeria & Quddus, Noor & Cozzani, Valerio, 2019. "Lessons learnt from the impact of hurricane Harvey on the chemical and process industry," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    15. Antonioni, Giacomo & Landucci, Gabriele & Necci, Amos & Gheorghiu, Diana & Cozzani, Valerio, 2015. "Quantitative assessment of risk due to NaTech scenarios caused by floods," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 334-345.
    16. Necci, Amos & Antonioni, Giacomo & Bonvicini, Sarah & Cozzani, Valerio, 2016. "Quantitative assessment of risk due to major accidents triggered by lightning," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 60-72.
    17. Necci, Amos & Antonioni, Giacomo & Cozzani, Valerio & Krausmann, Elisabeth & Borghetti, Alberto & Nucci, Carlo Alberto, 2014. "Assessment of lightning impact frequency for process equipment," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 95-105.
    18. Chaofeng Shao & Juan Yang & Xiaogang Tian & Meiting Ju & Lei Huang, 2013. "Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks," IJERPH, MDPI, vol. 10(4), pages 1-22, April.
    19. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    20. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:155-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.