IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v119y2023i2d10.1007_s11069-022-05770-5.html
   My bibliography  Save this article

A simplified methodology for rapid Natech risk assessment of flood-wind-hail multi-hazard scenario

Author

Listed:
  • Jiajun Wang

    (Tsinghua University
    Beijing Key Laboratory of Comprehensive Emergency Response Science)

  • Wenguo Weng

    (Tsinghua University
    Beijing Key Laboratory of Comprehensive Emergency Response Science)

Abstract

Natural hazard events that trigger technical emergencies (Natech events), as a typical type of multi-hazard, have become a matter of growing concern. In particular, the occurrence of Natech events in industrial areas triggered a number of severe accidents. The present research aims at introducing a sound but simplified methodology to quickly and flexibly assess the Natech risk in a flood-wind-hail multi-hazard scenario. Taking the analysis of atmospheric vertical storage tank as an example, the methodology is shown. This methodology consists of eight steps, relying on the simplified physical models of tank damage caused by multiple natural disasters. In addition, LOC probability and risk are calculated to provide reference for decision makers. The uncertain parameter set (UPS) proposed in the method and the Monte Carlo simulation method can help to purposefully analyze the impact of various parameters in multi-hazard scenarios. New risk assessment of wind-overturning and hail-yielding is implemented. And this method is also applicable to Natech events involving other multi-hazard scenarios and other types of industrial facilities, which helps to quickly evaluate the risk to provide possible reference, and saving time cost and improving the efficiency of decision-making.

Suggested Citation

  • Jiajun Wang & Wenguo Weng, 2023. "A simplified methodology for rapid Natech risk assessment of flood-wind-hail multi-hazard scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(2), pages 965-987, November.
  • Handle: RePEc:spr:nathaz:v:119:y:2023:i:2:d:10.1007_s11069-022-05770-5
    DOI: 10.1007/s11069-022-05770-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05770-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05770-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana Cruz & Norio Okada, 2008. "Methodology for preliminary assessment of Natech risk in urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(2), pages 199-220, August.
    2. Maria Milazzo & Giuseppa Ancione & Anna Basco & David Lister & Ernesto Salzano & Giuseppe Maschio, 2013. "Potential loading damage to industrial storage tanks due to volcanic ash fallout," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 939-953, March.
    3. Elisabeth Krausmann & Fesil Mushtaq, 2008. "A qualitative Natech damage scale for the impact of floods on selected industrial facilities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(2), pages 179-197, August.
    4. Ana Cruz & Elisabeth Krausmann & Giovanni Franchello, 2011. "Analysis of tsunami impact scenarios at an oil refinery," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 141-162, July.
    5. Olivar, Oscar J. Ramírez & Mayorga, Santiago Zuluaga & Giraldo, Felipe Muñoz & Sánchez-Silva, Mauricio & Pinelli, Jean-Paul & Salzano, Ernesto, 2020. "The effects of extreme winds on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Jiajun Wang & Zhichao He & Wenguo Weng, 2020. "A review of the research into the relations between hazards in multi-hazard risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2003-2026, December.
    7. Pamela Sands Showalter & Mary Fran Myers, 1994. "Natural Disasters in the United States as Release Agents of Oil, Chemicals, or Radiological Materials Between 1980‐1989: Analysis and Recommendations," Risk Analysis, John Wiley & Sons, vol. 14(2), pages 169-182, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Huang & Lizhi Yang & Kun Wu & Cheng-song Tan & Lin Qi & Yu Chen, 2025. "Study on the resilience recovery of civil airport infrastructure under weather extremes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(1), pages 1143-1163, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khakzad, Nima & Van Gelder, Pieter, 2018. "Vulnerability of industrial plants to flood-induced natechs: A Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 403-411.
    2. Antonioni, Giacomo & Landucci, Gabriele & Necci, Amos & Gheorghiu, Diana & Cozzani, Valerio, 2015. "Quantitative assessment of risk due to NaTech scenarios caused by floods," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 334-345.
    3. Jiajun Wang & Zhichao He & Wenguo Weng, 2020. "A review of the research into the relations between hazards in multi-hazard risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2003-2026, December.
    4. Necci, Amos & Antonioni, Giacomo & Cozzani, Valerio & Krausmann, Elisabeth & Borghetti, Alberto & Alberto Nucci, Carlo, 2013. "A model for process equipment damage probability assessment due to lightning," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 91-99.
    5. Rossi, Lorenzo & Casson Moreno, Valeria & Landucci, Gabriele, 2022. "Vulnerability assessment of process pipelines affected by flood events," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Marzo, E. & Busini, V. & Rota, R., 2015. "Definition of a short-cut methodology for assessing the vulnerability of a territory in natural–technological risk estimation," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 92-97.
    7. Tiezhong Liu & Hubo Zhang & Xiaowei Li & Haiyan Li, 2017. "Effects of organization factors on flood-related Natechs in urban areas of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 355-365, August.
    8. Anamaria Bukvic, 2015. "Integrated framework for the Relocation Potential Assessment of Coastal Communities (RPACC): application to Hurricane Sandy-affected areas," Environment Systems and Decisions, Springer, vol. 35(2), pages 264-278, June.
    9. Necci, Amos & Argenti, Francesca & Landucci, Gabriele & Cozzani, Valerio, 2014. "Accident scenarios triggered by lightning strike on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 30-46.
    10. Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    11. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    12. Nicholas Santella & Laura J. Steinberg & Gloria Andrea Aguirra, 2011. "Empirical Estimation of the Conditional Probability of Natech Events Within the United States," Risk Analysis, John Wiley & Sons, vol. 31(6), pages 951-968, June.
    13. Nishino, Tomoaki & Miyashita, Takuya & Mori, Nobuhito, 2024. "Methodology for probabilistic tsunami-triggered oil spill fire hazard assessment based on Natech cascading disaster modeling," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Sullivan, Daniel & Schmitt, Harrison J. & Calloway, Eric E. & Clausen, Whitney & Tucker, Pamela & Rayman, Jamie & Gerhardstein, Ben, 2021. "Chronic environmental contamination: A narrative review of psychosocial health consequences, risk factors, and pathways to community resilience," Social Science & Medicine, Elsevier, vol. 276(C).
    15. Dilshad Ahmad & Muhammad Afzal, 2021. "Impact of climate change on pastoralists’ resilience and sustainable mitigation in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11406-11426, August.
    16. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    17. Valente, Matteo & Ricci, Federica & Cozzani, Valerio, 2025. "A systematic review of Resilience Engineering applications to Natech accidents in the chemical and process industry," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    18. Hu, Xiaonong & Fang, Genshen & Yang, Jiayu & Zhao, Lin & Ge, Yaojun, 2023. "Simplified models for uncertainty quantification of extreme events using Monte Carlo technique," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    19. Alana M. Weir & Thomas M. Wilson & Mark S. Bebbington & Sarah Beaven & Teresa Gordon & Craig Campbell-Smart & Stuart Mead & James H. Williams & Roger Fairclough, 2024. "Approaching the challenge of multi-phase, multi-hazard volcanic impact assessment through the lens of systemic risk: application to Taranaki Mounga," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9327-9360, August.
    20. Atta-ur-Rahman & Amir Khan, 2013. "Analysis of 2010-flood causes, nature and magnitude in the Khyber Pakhtunkhwa, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 887-904, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:119:y:2023:i:2:d:10.1007_s11069-022-05770-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.