IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v229y2023ics0951832022004318.html
   My bibliography  Save this article

Resilience analysis and design for mobility-as-a-service based on enterprise architecture modeling

Author

Listed:
  • Zhou, Zhengshu
  • Matsubara, Yutaka
  • Takada, Hiroaki

Abstract

The development of a service that integrates multiple systems, platforms, and businesses, such as Mobility as a Service (MaaS), has attracted the attention of engineers and scholars. However, because of the complexity of the interactions of its subsystems, it is difficult to ensure the reliability of an integrated service, and the analysis approach of the individual subsystems that influence each other is insufficient. Even though many studies on functional safety for road vehicles have been conducted, there are currently no theoretical or experimental reports on MaaS reliability issues at the service level. To fill the void, we propose in this paper a resilience analysis method to facilitate the development of reliable mobility services. As a result, we proposed a novel MaaS resilience analysis and design method. We contend that a connection with enterprise architecture modeling helps to address resilience concerns for MaaS reliability. The claim is based on the close connection between resilience and reliability. Furthermore, we conduct a controlled experiment to demonstrate the efficacy of the proposed method and compare it quantitatively to a referenced method.

Suggested Citation

  • Zhou, Zhengshu & Matsubara, Yutaka & Takada, Hiroaki, 2023. "Resilience analysis and design for mobility-as-a-service based on enterprise architecture modeling," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004318
    DOI: 10.1016/j.ress.2022.108812
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022004318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Tuqiang & Wu, Wanting & Peng, Liqun & Zhang, Mingyang & Li, Zhixiong & Xiong, Yubing & Bai, Yuelong, 2022. "Evaluation of urban bus service reliability on variable time horizons using a hybrid deep learning method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    3. Hörcher, Daniel & Graham, Daniel J., 2020. "MaaS economics: Should we fight car ownership with subscriptions to alternative modes?," Economics of Transportation, Elsevier, vol. 22(C).
    4. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Sun, Hao & Wang, Haiqing & Yang, Ming & Reniers, Genserik, 2022. "A STAMP-based approach to quantitative resilience assessment of chemical process systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.
    7. Zinetullina, Altyngul & Yang, Ming & Khakzad, Nima & Golman, Boris & Li, Xinhong, 2021. "Quantitative resilience assessment of chemical process systems using functional resonance analysis method and Dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    8. Pan, Xing & Dang, Yuheng & Wang, Huixiong & Hong, Dongpao & Li, Yuehong & Deng, Hongxu, 2022. "Resilience model and recovery strategy of transportation network based on travel OD-grid analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    9. Kim, Yoo Chan & Yoon, Wan Chul, 2021. "Quantitative representation of the functional resonance analysis method for risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    10. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    11. Polydoropoulou, Amalia & Pagoni, Ioanna & Tsirimpa, Athena & Roumboutsos, Athena & Kamargianni, Maria & Tsouros, Ioannis, 2020. "Prototype business models for Mobility-as-a-Service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 149-162.
    12. Schikofsky, Jan & Dannewald, Till & Kowald, Matthias, 2020. "Exploring motivational mechanisms behind the intention to adopt mobility as a service (MaaS): Insights from Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 296-312.
    13. Yinying He & Csaba Csiszár, 2021. "Model for Crowdsourced Parcel Delivery Embedded into Mobility as a Service Based on Autonomous Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, May.
    14. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    15. Yin, Jiateng & Ren, Xianliang & Liu, Ronghui & Tang, Tao & Su, Shuai, 2022. "Quantitative analysis for resilience-based urban rail systems: A hybrid knowledge-based and data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    16. Pereira, Brenda Medeiros & Santos Senna, Luiz Afonso dos & Lindau, Luis Antonio, 2018. "Stakeholder Value Network: Modeling key relationships for advancing towards high quality bus transit systems," Research in Transportation Economics, Elsevier, vol. 69(C), pages 386-393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hongxu & Sun, Qin & Zhong, Yuanfu & Huang, Zhiwen & Zhang, Yingchao, 2023. "A soft resource optimization method for improving the resilience of UAV swarms under continuous attack," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jue & Wang, Hongwei, 2023. "Modeling and analyzing multiteam coordination task safety risks in socio-technical systems based on FRAM and multiplex network: Application in the construction industry," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Lopez-Carreiro, Iria & Monzon, Andres & Lopez-Lambas, Maria E., 2021. "Comparison of the willingness to adopt MaaS in Madrid (Spain) and Randstad (The Netherlands) metropolitan areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 275-294.
    5. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Jaroslav Mašek & Vladimíra Štefancová & Jaroslav Mazanec & Petra Juránková, 2023. "The Classification of Application Users Supporting and Facilitating Travel Mobility Using Two-Step Cluster Analysis," Mathematics, MDPI, vol. 11(9), pages 1-16, May.
    7. Lapo Mola & Quentin Berger & Karoliina Haavisto & Isabella Soscia, 2020. "Mobility as a Service: An Exploratory Study of Consumer Mobility Behaviour," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    8. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Zipeng Zhang & Ning Zhang, 2021. "A Novel Development Scheme of Mobility as a Service: Can It Provide a Sustainable Environment for China?," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    10. Zheng, Shuai & Liu, Yugang & Lin, Yexin & Wang, Qiang & Yang, Hongtai & Chen, Bin, 2022. "Bridging strategy for the disruption of metro considering the reliability of transportation system: Metro and conventional bus network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Kriswardhana, Willy & Esztergár-Kiss, Domokos, 2023. "Exploring the aspects of MaaS adoption based on college students’ preferences," Transport Policy, Elsevier, vol. 136(C), pages 113-125.
    12. Maria Vittoria Corazza & Giordano Carassiti, 2021. "Investigating Maturity Requirements to Operate Mobility as a Service: The Rome Case," Sustainability, MDPI, vol. 13(15), pages 1-31, July.
    13. Iria Lopez-Carreiro & Andres Monzon & Elena Lopez, 2023. "MaaS Implications in the Smart City: A Multi-Stakeholder Approach," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    14. Reck, Daniel J. & Hensher, David A. & Ho, Chinh Q., 2020. "MaaS bundle design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 485-501.
    15. Yan, Rundong & Dunnett, Sarah & Andrews, John, 2023. "A Petri net model-based resilience analysis of nuclear power plants under the threat of natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    16. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    17. Claudia Caballini & Erika Olivari & Carlotta Gasparini & Bruno Dalla Chiara, 2023. "The Spread of MaaS Initiatives in Europe: The Leading Role of Public Governance Emerging from an Italian Regional Application," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    18. Yin, Jiateng & Ren, Xianliang & Liu, Ronghui & Tang, Tao & Su, Shuai, 2022. "Quantitative analysis for resilience-based urban rail systems: A hybrid knowledge-based and data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    19. Julio César dos Santos & Paulo Ribeiro & Ricardo Jorge Silva Bento, 2023. "A Review of the Promotion of Sustainable Mobility of Workers by Industries," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    20. Panagiotis Georgakis & Adel Almohammad & Efthimios Bothos & Babis Magoutas & Kostantina Arnaoutaki & Gregoris Mentzas, 2020. "Heuristic-Based Journey Planner for Mobility as a Service (MaaS)," Sustainability, MDPI, vol. 12(23), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.