IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v223y2022ics0951832022001442.html
   My bibliography  Save this article

Resilience model and recovery strategy of transportation network based on travel OD-grid analysis

Author

Listed:
  • Pan, Xing
  • Dang, Yuheng
  • Wang, Huixiong
  • Hong, Dongpao
  • Li, Yuehong
  • Deng, Hongxu

Abstract

Transportation is the key to a city's prosperity, however, there is possibility that the development and expansion of city make the transportation system complicated, uncertain and vulnerable, especially when in the face of damage. Although resilience is a critical factor for understanding and managing the damage and recovery of the transportation system, study on model of transportation resilience, which is able to effectively utilize actual data and is based on real cases, is still not enough. Therefore, this paper proposes a resilience model and investigates the optimization of the recovery strategy according to this model. It constructs a modeling framework based on the OD-grid network and provides a brand-new performance metric for transportation network resilience analysis based on grid capacity. It also develops two resilience assessment models and compares their characters. Focusing on the recovery of transportation resilience process, it presents two recovery strategies considering recovery sequence and resource allocation respectively and uses the GA algorithm to optimize them and solve the problem. It then demonstrates the effectiveness of the proposed model and the recovery algorithm through the resilience analysis and recovery strategy optimization of a city's transportation network model, which is built according to the real GPS data.

Suggested Citation

  • Pan, Xing & Dang, Yuheng & Wang, Huixiong & Hong, Dongpao & Li, Yuehong & Deng, Hongxu, 2022. "Resilience model and recovery strategy of transportation network based on travel OD-grid analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:reensy:v:223:y:2022:i:c:s0951832022001442
    DOI: 10.1016/j.ress.2022.108483
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022001442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shafieezadeh, Abdollah & Ivey Burden, Lindsay, 2014. "Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 207-219.
    2. Zhou, Tuqiang & Wu, Wanting & Peng, Liqun & Zhang, Mingyang & Li, Zhixiong & Xiong, Yubing & Bai, Yuelong, 2022. "Evaluation of urban bus service reliability on variable time horizons using a hybrid deep learning method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Janić, Milan, 2015. "Reprint of “Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event”," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 77-92.
    4. Tran, Huy T. & Balchanos, Michael & Domerçant, Jean Charles & Mavris, Dimitri N., 2017. "A framework for the quantitative assessment of performance-based system resilience," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 73-84.
    5. Huang, Wencheng & Li, Linqing & Liu, Hongyi & Zhang, Rui & Xu, Minhao, 2021. "Defense resource allocation in road dangerous goods transportation network: A Self-Contained Girvan-Newman Algorithm and Mean Variance Model combined approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Iannacone, Leandro & Sharma, Neetesh & Tabandeh, Armin & Gardoni, Paolo, 2022. "Modeling Time-varying Reliability and Resilience of Deteriorating Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Yodo, Nita & Wang, Pingfeng, 2018. "A control-guided failure restoration framework for the design of resilient engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 179-190.
    8. Zou, Qiling & Chen, Suren, 2021. "Resilience-based Recovery Scheduling of Transportation Network in Mixed Traffic Environment: A Deep-Ensemble-Assisted Active Learning Approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    10. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2022. "A demand-based framework for resilience assessment of multistate networks under disruptions," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Adjetey-Bahun, Kpotissan & Birregah, Babiga & Châtelet, Eric & Planchet, Jean-Luc, 2016. "A model to quantify the resilience of mass railway transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 1-14.
    12. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Agudelo-Vera, Claudia M. & Leduc, Wouter R.W.A. & Mels, Adriaan R. & Rijnaarts, Huub H.M., 2012. "Harvesting urban resources towards more resilient cities," Resources, Conservation & Recycling, Elsevier, vol. 64(C), pages 3-12.
    14. Jingfei Zhang & Yuguo Chen, 2013. "Sampling for Conditional Inference on Network Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1295-1307, December.
    15. Liu, Wei & Song, Zhaoyang & Ouyang, Min, 2020. "Lifecycle operational resilience assessment of urban water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    16. Boakye, Jessica & Guidotti, Roberto & Gardoni, Paolo & Murphy, Colleen, 2022. "The role of transportation infrastructure on the impact of natural hazards on communities," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    17. Reggiani, Aura, 2013. "Network resilience for transport security: Some methodological considerations," Transport Policy, Elsevier, vol. 28(C), pages 63-68.
    18. Zhang, Xiaoge & Mahadevan, Sankaran & Sankararaman, Shankar & Goebel, Kai, 2018. "Resilience-based network design under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 364-379.
    19. Wu, Yangyang & Hou, Guangyang & Chen, Suren, 2021. "Post-earthquake resilience assessment and long-term restoration prioritization of transportation network," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    20. Dui, Hongyan & Chen, Shuanshuan & Zhou, Yanjie & Wu, Shaomin, 2022. "Maintenance analysis of transportation networks by the traffic transfer principle considering node idle capacity," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    21. Yu, Yun-Chi & Gardoni, Paolo, 2022. "Predicting road blockage due to building damage following earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    22. Dui, Hongyan & Zheng, Xiaoqian & Wu, Shaomin, 2021. "Resilience analysis of maritime transportation systems based on importance measures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    23. Janić, Milan, 2015. "Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 1-16.
    24. Chengpeng Wan & Zaili Yang & Di Zhang & Xinping Yan & Shiqi Fan, 2018. "Resilience in transportation systems: a systematic review and future directions," Transport Reviews, Taylor & Francis Journals, vol. 38(4), pages 479-498, July.
    25. Li, Zhaolong & Jin, Chun & Hu, Pan & Wang, Cong, 2019. "Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 503-514.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huifang Liu & Xiaoyi Shi & Pengwei Yuan & Xiaoqing Dong, 2022. "Study on the Evolution of Multiple Network Resilience of Urban Agglomerations in the Yellow River Basin," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    2. Wang, Nanxi & Wu, Min & Yuen, Kum Fai, 2023. "Assessment of port resilience using Bayesian network: A study of strategies to enhance readiness and response capacities," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Yan, Rundong & Dunnett, Sarah & Andrews, John, 2023. "A Petri net model-based resilience analysis of nuclear power plants under the threat of natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Wang, Nanxi & Yuen, Kum Fai, 2022. "Resilience assessment of waterway transportation systems: Combining system performance and recovery cost," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Zuo, Fei & Zio, Enrico & Xu, Yue, 2023. "Bi-objective optimization of the scheduling of risk-related resources for risk response," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Li, Shunlong & Wang, Jie & He, Shaoyang, 2023. "Connectivity probability evaluation of a large-scale highway bridge network using network decomposition," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    8. Chenming Jiang & Junliang He & Shengxue Zhu & Wenbo Zhang & Gen Li & Weikun Xu, 2023. "Injury-Based Surrogate Resilience Measure: Assessing the Post-Crash Traffic Resilience of the Urban Roadway Tunnels," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    9. Wang, Ying & Zhao, Ou & Zhang, Limao, 2024. "Modeling urban rail transit system resilience under natural disasters: A two-layer network framework based on link flow," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Zhou, Zhengshu & Matsubara, Yutaka & Takada, Hiroaki, 2023. "Resilience analysis and design for mobility-as-a-service based on enterprise architecture modeling," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    11. Wu, Yangyang & Chen, Suren, 2023. "Resilience modeling and pre-hazard mitigation planning of transportation network to support post-earthquake emergency medical response," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Wang, Jie & Zhang, Yangyi & Li, Shunlong & Xu, Wencheng & Jin, Yao, 2024. "Directed network-based connectivity probability evaluation for urban bridges," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhaolong & Jin, Chun & Hu, Pan & Wang, Cong, 2019. "Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 503-514.
    2. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    3. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    4. Zhao, Taiyi & Tang, Yuchun & Li, Qiming & Wang, Jingquan, 2023. "Resilience-oriented network reconfiguration strategies for community emergency medical services," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Liu, Meili & Qi, Xiaogang & Pan, Hao, 2022. "Optimizing communication network geodiversity for disaster resilience through shielding approach," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Yin, Jiateng & Ren, Xianliang & Liu, Ronghui & Tang, Tao & Su, Shuai, 2022. "Quantitative analysis for resilience-based urban rail systems: A hybrid knowledge-based and data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    10. Tao Ji & Yanhong Yao & Yue Dou & Shejun Deng & Shijun Yu & Yunqiang Zhu & Huajun Liao, 2022. "The Impact of Climate Change on Urban Transportation Resilience to Compound Extreme Events," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    11. Wang, Nanxi & Yuen, Kum Fai, 2022. "Resilience assessment of waterway transportation systems: Combining system performance and recovery cost," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Hu, Jinqiu & Khan, Faisal & Zhang, Laibin, 2021. "Dynamic resilience assessment of the Marine LNG offloading system," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    13. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    16. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Sun, Qin & Li, Hongxu & Wang, Yuzhi & Zhang, Yingchao, 2022. "Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    18. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Malandri, Caterina & Mantecchini, Luca & Postorino, Maria Nadia, 2023. "A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems," Transport Policy, Elsevier, vol. 139(C), pages 109-122.
    20. Dui, Hongyan & Zheng, Xiaoqian & Wu, Shaomin, 2021. "Resilience analysis of maritime transportation systems based on importance measures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:223:y:2022:i:c:s0951832022001442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.