IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v217y2022ics0951832021005731.html
   My bibliography  Save this article

Modeling Time-varying Reliability and Resilience of Deteriorating Infrastructure

Author

Listed:
  • Iannacone, Leandro
  • Sharma, Neetesh
  • Tabandeh, Armin
  • Gardoni, Paolo

Abstract

The spatial and temporal extent of disruptions to services provided by infrastructure following disruptive events is directly related to the instantaneous state of the infrastructure and their post-disruption recovery. This paper develops a novel formulation to model the effects of infrastructure deterioration on their time-varying ability to recover after disruptive events. By unifying available models for deterioration and recovery, the paper proposes a general formulation to model the physical state and functionality of deteriorating infrastructure throughout its service life. The paper further develops resilience measures to quantify the temporal and spatial variations of infrastructure's ability to recover after disruptive events. The proposed formulation has a hierarchical structure that enables exploiting readily available data at the lower level of hierarchy to improve the prediction capability of models at the infrastructure level. Incorporating the governing physical laws in the proposed formulation also enables customizing the models to emulate the reality of infrastructure deterioration and recovery. While the formulation is general, the emphasis is on modeling potable water infrastructure as a case in which the deterioration of pipelines grows mostly undetectable until extensively developed. By the time the deterioration becomes visible, a substantial portion of the infrastructure service life has already been depleted, and costly repair or replacement would be inevitable. To illustrate, the proposed formulation has been implemented to model the time-varying reliability and resilience of the potable water infrastructure of the city of Seaside in Oregon, United States. The example highlights the effects of spatially varying exposure conditions and pipelines’ age on the reliability, functionality, recovery, and resilience of the potable water infrastructure.

Suggested Citation

  • Iannacone, Leandro & Sharma, Neetesh & Tabandeh, Armin & Gardoni, Paolo, 2022. "Modeling Time-varying Reliability and Resilience of Deteriorating Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021005731
    DOI: 10.1016/j.ress.2021.108074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021005731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bocchini, Paolo & Frangopol, Dan M., 2011. "A probabilistic computational framework for bridge network optimal maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 332-349.
    2. Choe, Do-Eun & Gardoni, Paolo & Rosowsky, David & Haukaas, Terje, 2008. "Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 383-393.
    3. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    4. Burak Cavdaroglu & Erik Hammel & John Mitchell & Thomas Sharkey & William Wallace, 2013. "Integrating restoration and scheduling decisions for disrupted interdependent infrastructure systems," Annals of Operations Research, Springer, vol. 203(1), pages 279-294, March.
    5. Kabir, Golam & Balek, Ngandu Balekelayi Celestin & Tesfamariam, Solomon, 2018. "Consequence-based framework for buried infrastructure systems: A Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 290-301.
    6. Guidotti, Roberto & Gardoni, Paolo & Rosenheim, Nathanael, 2019. "Integration of physical infrastructure and social systems in communities’ reliability and resilience analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 476-492.
    7. Mishalani, Rabi G. & Koutsopoulos, Haris N., 2002. "Modeling the spatial behavior of infrastructure condition," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 171-194, February.
    8. Fu, Yuqiang & Yuan, Tao & Zhu, Xiaoyan, 2019. "Importance-measure based methods for component reassignment problem of degrading components," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    9. Bilal M. Ayyub, 2014. "Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 340-355, February.
    10. Gaofeng Jia & Armin Tabandeh & Paolo Gardoni, 2017. "Life-Cycle Analysis of Engineering Systems: Modeling Deterioration, Instantaneous Reliability, and Resilience," Springer Series in Reliability Engineering, in: Paolo Gardoni (ed.), Risk and Reliability Analysis: Theory and Applications, pages 465-494, Springer.
    11. Liu, Wei & Song, Zhaoyang & Ouyang, Min, 2020. "Lifecycle operational resilience assessment of urban water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    12. Yang, David Y. & Frangopol, Dan M., 2019. "Life-cycle management of deteriorating civil infrastructure considering resilience to lifetime hazards: A general approach based on renewal-reward processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 197-212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    3. Almoghathawi, Yasser & Selim, Shokri & Barker, Kash, 2023. "Community structure recovery optimization for partial disruption, functionality, and restoration in interdependent networks," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Kenneth Martínez & David Claudio, 2023. "Expanding Fundamental Boundaries between Resilience and Survivability in Systems Engineering: A Literature Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    7. Cai, Baoping & Zhang, Yanping & Wang, Haifeng & Liu, Yonghong & Ji, Renjie & Gao, Chuntan & Kong, Xiangdi & Liu, Jing, 2021. "Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    8. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Barker, Kash & Moronta, Jose, 2018. "Quantifying the resilience of community structures in networks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 466-474.
    9. MacKenzie, Cameron A. & Hu, Chao, 2019. "Decision making under uncertainty for design of resilient engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    10. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    11. Morshedi, Mohamad Ali & Kashani, Hamed, 2022. "Assessment of vulnerability reduction policies: Integration of economic and cognitive models of decision-making," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Pan, Xing & Dang, Yuheng & Wang, Huixiong & Hong, Dongpao & Li, Yuehong & Deng, Hongxu, 2022. "Resilience model and recovery strategy of transportation network based on travel OD-grid analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    13. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2022. "A demand-based framework for resilience assessment of multistate networks under disruptions," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    15. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Cheng, Yao & Elsayed, E.A. & Chen, Xi, 2021. "Random Multi Hazard Resilience Modeling of Engineered Systems and Critical Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    17. Patriarca, Riccardo & De Paolis, Alessandro & Costantino, Francesco & Di Gravio, Giulio, 2021. "Simulation model for simple yet robust resilience assessment metrics for engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    18. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    19. Eric Specking & Bobby Cottam & Gregory Parnell & Edward Pohl & Matthew Cilli & Randy Buchanan & Zephan Wade & Colin Small, 2019. "Assessing Engineering Resilience for Systems with Multiple Performance Measures," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1899-1912, September.
    20. Sachuer Bao & Chi Zhang & Min Ouyang & Lixin Miao, 2019. "An integrated tri-level model for enhancing the resilience of facilities against intentional attacks," Annals of Operations Research, Springer, vol. 283(1), pages 87-117, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021005731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.