IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v256y2025ics0951832024007531.html
   My bibliography  Save this article

The role of AI in detecting and mitigating human errors in safety-critical industries: A review

Author

Listed:
  • Gursel, Ezgi
  • Madadi, Mahboubeh
  • Coble, Jamie Baalis
  • Agarwal, Vivek
  • Yadav, Vaibhav
  • Boring, Ronald L.
  • Khojandi, Anahita

Abstract

For safety-critical industries, human error (HE) presents continual risks to system productivity, reliability and safety. Artificial intelligence (AI) and machine learning (ML) methods have emerged as promising approaches to understand, categorize and mitigate the risk of HE in safety-critical industries. This review offers an examination of the current landscape regarding the utilization of AI/ML with regards to HE in safety-critical industries, categorizing literature into descriptive modeling, predictive modeling, prescriptive modeling, and generative modeling techniques. Additionally, the review aims to provide insights regarding themes in literature, challenges, and future research directions. Findings of the review suggest that AI/ML methods can prove useful in addressing the HE problem across safety-critical industries.

Suggested Citation

  • Gursel, Ezgi & Madadi, Mahboubeh & Coble, Jamie Baalis & Agarwal, Vivek & Yadav, Vaibhav & Boring, Ronald L. & Khojandi, Anahita, 2025. "The role of AI in detecting and mitigating human errors in safety-critical industries: A review," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007531
    DOI: 10.1016/j.ress.2024.110682
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024007531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    2. Harleen Kaur Sandhu & Saran Srikanth Bodda & Abhinav Gupta, 2023. "A Future with Machine Learning: Review of Condition Assessment of Structures and Mechanical Systems in Nuclear Facilities," Energies, MDPI, vol. 16(6), pages 1-23, March.
    3. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    4. Park, Jong Woo & Lee, Seung Jun, 2022. "Simulation optimization framework for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Panagiota Galetsi & Korina Katsaliaki, 2020. "A review of the literature on big data analytics in healthcare," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(10), pages 1511-1529, October.
    6. Chen, Jeng-Chung & Yu, Vincent F., 2018. "Relationship between human error intervention strategies and unsafe acts: The role of strategy implementability," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 112-122.
    7. Zheng, Shuwen & Pan, Kai & Liu, Jie & Chen, Yunxia, 2024. "Empirical study on fine-tuning pre-trained large language models for fault diagnosis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    8. Fan, Shiqi & Yang, Zaili, 2023. "Towards objective human performance measurement for maritime safety: A new psychophysiological data-driven machine learning method," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    9. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Deng, Wanyi, 2023. "Determining the critical risk factors for predicting the severity of ship collision accidents using a data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Park, Jinkyun & Kim, Hyeonmin, 2024. "A case study to address the limitation of accident scenario identifications with respect to diverse manual responses," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    11. Pfeffer, Jeffrey, 2010. "Building Sustainable Organizations: The Human Factor," Research Papers 2017r, Stanford University, Graduate School of Business.
    12. Fan, Shiqi & Yang, Zaili, 2024. "Accident data-driven human fatigue analysis in maritime transport using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    13. Yan, Dongyang & Li, Keping & Zhu, Qiaozhen & Liu, Yanyan, 2023. "A railway accident prevention method based on reinforcement learning – Active preventive strategy by multi-modal data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Ritu Agarwal & Vasant Dhar, 2014. "Editorial —Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research," Information Systems Research, INFORMS, vol. 25(3), pages 443-448, September.
    15. Theophilus, Stephen C. & Esenowo, Victor N. & Arewa, Andrew O. & Ifelebuegu, Augustine O. & Nnadi, Ernest O. & Mbanaso, Fredrick U., 2017. "Human factors analysis and classification system for the oil and gas industry (HFACS-OGI)," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 168-176.
    16. Zhang, Xiaoge & Mahadevan, Sankaran & Lau, Nathan & Weinger, Matthew B., 2020. "Multi-source information fusion to assess control room operator performance," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    17. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    18. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Post-Print hal-03982682, HAL.
    19. Chen Wang & Lin Liu & Chengcheng Xu & Weitao Lv, 2019. "Predicting Future Driving Risk of Crash-Involved Drivers Based on a Systematic Machine Learning Framework," IJERPH, MDPI, vol. 16(3), pages 1-18, January.
    20. Jae W. Kim & Wondea Jung & Jaejoo Ha, 2004. "AGAPE‐ET: A Methodology for Human Error Analysis of Emergency Tasks," Risk Analysis, John Wiley & Sons, vol. 24(5), pages 1261-1277, October.
    21. Lepenioti, Katerina & Bousdekis, Alexandros & Apostolou, Dimitris & Mentzas, Gregoris, 2020. "Prescriptive analytics: Literature review and research challenges," International Journal of Information Management, Elsevier, vol. 50(C), pages 57-70.
    22. Liu, Xuan & Meng, Huixing & An, Xu & Xing, Jinduo, 2024. "Integration of functional resonance analysis method and reinforcement learning for updating and optimizing emergency procedures in variable environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    23. Amini, Mostafa & Bagheri, Ali & Delen, Dursun, 2022. "Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    24. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    25. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Xuting & Hu, Yue & Qin, Yichen & Zhang, Yuan, 2024. "Risk assessment of unmanned aerial vehicle accidents based on data-driven Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Guo, Mingyang & Chen, Miao & Yuan, Lihao & Zhang, Zhihui & Lv, Jia & Cai, Zhiyong, 2025. "Investigation of ship collision accident risk factors using BP-DEMATEL method based on HFACS-SCA," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    3. Zhang, Mingyang & Taimuri, Ghalib & Zhang, Jinfen & Zhang, Di & Yan, Xinping & Kujala, Pentti & Hirdaris, Spyros, 2025. "Systems driven intelligent decision support methods for ship collision and grounding prevention: Present status, possible solutions, and challenges," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    4. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Fan, Shiqi & Shi, Kun & Weng, Jinxian & Yang, Zaili, 2025. "Letting losses be lessons: Human-machine cooperation in maritime transport," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    6. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2024. "A framework for ship abnormal behaviour detection and classification using AIS data," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    7. Wang, Hong & Chen, Ning & Wu, Bing & Guedes Soares, C., 2024. "Human and organizational factors analysis of collision accidents between merchant ships and fishing vessels based on HFACS-BN model," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    8. Fan, Shiqi & Yang, Zaili, 2024. "Accident data-driven human fatigue analysis in maritime transport using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Wen, He & Khan, Faisal & AbouRizk, Simaan & Fu, Gui, 2024. "Understanding of causality and its mathematical representation in accident modeling," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    10. Cao, Yuhao & Iulia, Manole & Majumdar, Arnab & Feng, Yinwei & Xin, Xuri & Wang, Xinjian & Wang, Huanxin & Yang, Zaili, 2025. "Investigation of the risk influential factors of maritime accidents: A novel topology and robustness analytical framework," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    11. Obeng, Francis & Domeh, Daniel & Khan, Faisal & Bose, Neil & Sanli, Elizabeth, 2024. "An operational risk management approach for small fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    12. Sui, Zhongyi & Wang, Shuaian, 2025. "Traffic advisory for ship encounter situation based on linear dynamic system," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    13. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    14. Wang, Yuhong & Li, Pengchang & Hong, Cheng & Yang, Zaili, 2025. "Causation analysis of ship collisions using a TM-FRAM model," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    15. Li, Jian & Yang, Zhao & He, Hongxia & Guo, Changzhen & Chen, Yubo & Zhang, Yong, 2024. "Risk causation analysis and prevention strategy of working fluid systems based on accident data and complex network theory," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    16. Kaptan, Mehmet & Uğurlu, Özkan & Wang, Jin, 2021. "The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    17. Sezer, Sukru Ilke & Camliyurt, Gokhan & Aydin, Muhmmet & Akyuz, Emre & Gardoni, Paolo, 2023. "A bow-tie extended D-S evidence-HEART modelling for risk analysis of cargo tank cracks on oil/chemical tanker," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Abreu, Danilo T.M.P. & Maturana, Marcos C. & Droguett, Enrique Lopez & Martins, Marcelo R., 2022. "Human reliability analysis of conventional maritime pilotage operations supported by a prospective model," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    19. Ji-Min Sur & Young-Ju Kim, 2024. "Multi-Criteria Model for Identifying and Ranking Risky Types of Maritime Accidents Using Integrated Ordinal Priority Approach and Grey Relational Analysis Approach," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    20. Hu, Lunhu & Pan, Xing & Kang, Rui & Chu, Jian & Gao, Yunfeng & Xue, Zhong & Baoyin, Hexi, 2024. "Dynamic risk assessment of Uncertain Random System considering operator's simple emergency-stop action in short time window," Reliability Engineering and System Safety, Elsevier, vol. 252(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.