IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v50y2020icp57-70.html

Prescriptive analytics: Literature review and research challenges

Author

Listed:
  • Lepenioti, Katerina
  • Bousdekis, Alexandros
  • Apostolou, Dimitris
  • Mentzas, Gregoris

Abstract

Business analytics aims to enable organizations to make quicker, better, and more intelligent decisions with the aim to create business value. To date, the major focus in the academic and industrial realms is on descriptive and predictive analytics. Nevertheless, prescriptive analytics, which seeks to find the best course of action for the future, has been increasingly gathering the research interest. Prescriptive analytics is often considered as the next step towards increasing data analytics maturity and leading to optimized decision making ahead of time for business performance improvement. This paper investigates the existing literature pertaining to prescriptive analytics and prominent methods for its implementation, provides clarity on the research field of prescriptive analytics, synthesizes the literature review in order to identify the existing research challenges, and outlines directions for future research.

Suggested Citation

  • Lepenioti, Katerina & Bousdekis, Alexandros & Apostolou, Dimitris & Mentzas, Gregoris, 2020. "Prescriptive analytics: Literature review and research challenges," International Journal of Information Management, Elsevier, vol. 50(C), pages 57-70.
  • Handle: RePEc:eee:ininma:v:50:y:2020:i:c:p:57-70
    DOI: 10.1016/j.ijinfomgt.2019.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401218309873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2019.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:50:y:2020:i:c:p:57-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.