IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2628-d1093827.html
   My bibliography  Save this article

A Future with Machine Learning: Review of Condition Assessment of Structures and Mechanical Systems in Nuclear Facilities

Author

Listed:
  • Harleen Kaur Sandhu

    (Department of CCEE, North Carolina State University, Raleigh, NC 27695, USA
    These authors contributed equally to this work.)

  • Saran Srikanth Bodda

    (Department of CCEE, North Carolina State University, Raleigh, NC 27695, USA
    These authors contributed equally to this work.)

  • Abhinav Gupta

    (Center for Nuclear Energy Facilities and Structures, North Carolina State University, Raleigh, NC 27695, USA
    These authors contributed equally to this work.)

Abstract

The nuclear industry is exploring applications of Artificial Intelligence (AI), including autonomous control and management of reactors and components. A condition assessment framework that utilizes AI and sensor data is an important part of such an autonomous control system. A nuclear power plant has various structures, systems, and components (SSCs) such as piping-equipment that carries coolant to the reactor. Piping systems can degrade over time because of flow-accelerated corrosion and erosion. Any cracks and leakages can cause loss of coolant accident (LOCA). The current industry standards for conducting maintenance of vital SSCs can be time and cost-intensive. AI can play a greater role in the condition assessment and can be extended to recognize concrete degradation (chloride-induced damage and alkali–silica reaction) before cracks develop. This paper reviews developments in condition assessment and AI applications of structural and mechanical systems. The applicability of existing techniques to nuclear systems is somewhat limited because its response requires characterization of high and low-frequency vibration modes, whereas previous studies focus on systems where a single vibration mode can define the degraded state. Data assimilation and storage is another challenging aspect of autonomous control. Advances in AI and data mining world can help to address these challenges.

Suggested Citation

  • Harleen Kaur Sandhu & Saran Srikanth Bodda & Abhinav Gupta, 2023. "A Future with Machine Learning: Review of Condition Assessment of Structures and Mechanical Systems in Nuclear Facilities," Energies, MDPI, vol. 16(6), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2628-:d:1093827
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2628/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2628/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr F. Borowski, 2021. "Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector," Energies, MDPI, vol. 14(7), pages 1-20, March.
    2. Bodda, Saran Srikanth & Gupta, Abhinav & Dinh, Nam, 2020. "Enhancement of risk informed validation framework for external hazard scenario," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Brendan Kochunas & Xun Huan, 2021. "Digital Twin Concepts with Uncertainty for Nuclear Power Applications," Energies, MDPI, vol. 14(14), pages 1-32, July.
    4. Konstantinos Prantikos & Lefteri H. Tsoukalas & Alexander Heifetz, 2022. "Physics-Informed Neural Network Solution of Point Kinetics Equations for a Nuclear Reactor Digital Twin," Energies, MDPI, vol. 15(20), pages 1-22, October.
    5. Antonello, Federico & Buongiorno, Jacopo & Zio, Enrico, 2022. "A methodology to perform dynamic risk assessment using system theory and modeling and simulation: Application to nuclear batteries," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    7. Jianhui Wu & Jingen Chen & Chunyan Zou & Xiaoxiao Li, 2022. "Accident Modeling and Analysis of Nuclear Reactors," Energies, MDPI, vol. 15(16), pages 1-3, August.
    8. Lorenzo Malerba & Abderrahim Al Mazouzi & Marjorie Bertolus & Marco Cologna & Pål Efsing & Adrian Jianu & Petri Kinnunen & Karl-Fredrik Nilsson & Madalina Rabung & Mariano Tarantino, 2022. "Materials for Sustainable Nuclear Energy: A European Strategic Research and Innovation Agenda for All Reactor Generations," Energies, MDPI, vol. 15(5), pages 1-48, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqiang Peng & Jichong Lei & Zining Ni & Tao Yu & Jinsen Xie & Jun Hong & Hong Hu, 2024. "Research on Data-Driven Methods for Solving High-Dimensional Neutron Transport Equations," Energies, MDPI, vol. 17(16), pages 1-11, August.
    2. Gursel, Ezgi & Madadi, Mahboubeh & Coble, Jamie Baalis & Agarwal, Vivek & Yadav, Vaibhav & Boring, Ronald L. & Khojandi, Anahita, 2025. "The role of AI in detecting and mitigating human errors in safety-critical industries: A review," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    3. Eduard Khomiak & Roman Trishch & Joanicjusz Nazarko & Miloslav Novotný & Vladislavas Petraškevičius, 2025. "Method of Quality Control of Nuclear Reactor Element Tightness to Improve Environmental Safety," Energies, MDPI, vol. 18(9), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    2. Cuesta, Jokin & Leturiondo, Urko & Vidal, Yolanda & Pozo, Francesc, 2025. "A review of prognostics and health management techniques in wind energy," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    3. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
    4. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    5. Jun Liu & Yu Qian & Huihong Chang & Jeffrey Yi-Lin Forrest, 2022. "The Impact of Technology Innovation on Enterprise Capacity Utilization—Evidence from China’s Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    6. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    7. Raval, Khushi Jatinkumar & Jadav, Nilesh Kumar & Rathod, Tejal & Tanwar, Sudeep & Vimal, Vrince & Yamsani, Nagendar, 2024. "A survey on safeguarding critical infrastructures: Attacks, AI security, and future directions," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
    8. Ning, Jiajun & Xiong, Lixin, 2024. "Analysis of the dynamic evolution process of the digital transformation of renewable energy enterprises based on the cooperative and evolutionary game model," Energy, Elsevier, vol. 288(C).
    9. Pei Zhang & Peiran Chen & Fan Xiao & Yong Sun & Shuyan Ma & Ziwei Zhao, 2022. "The Impact of Information Infrastructure on Air Pollution: Empirical Evidence from China," IJERPH, MDPI, vol. 19(21), pages 1-17, November.
    10. Anna Borkovcová & Miloslava Černá & Marcela Sokolová, 2022. "Blockchain in the Energy Sector—Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    11. Jakov Batelić & Karlo Griparić & Dario Matika, 2021. "Impact of Remediation-Based Maintenance on the Reliability of a Coal-Fired Power Plant Using Generalized Stochastic Petri Nets," Energies, MDPI, vol. 14(18), pages 1-14, September.
    12. Nguyen Thanh Viet & Alla G. Kravets, 2022. "The New Method for Analyzing Technology Trends of Smart Energy Asset Performance Management," Energies, MDPI, vol. 15(18), pages 1-26, September.
    13. Diao, Xiaoxu & Zhao, Yunfei & Smidts, Carol & Vaddi, Pavan Kumar & Li, Ruixuan & Lei, Hangtian & Chakhchoukh, Yacine & Johnson, Brian & Blanc, Katya Le, 2024. "Dynamic probabilistic risk assessment for electric grid cybersecurity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Artur Kwasek & Damian Kocot & Izabela Gontarek & Jacek Oleksiejuk & Joanna Rogozinska-Mitrut & Malgorzata Golinska-Pieszynska, 2024. "Human Resource Management Practices in an Agile Organization in the Aspect of Own Research," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 383-399.
    15. Lei Fu & Tiantian Zhu & Kai Zhu & Yiling Yang, 2019. "Condition Monitoring for the Roller Bearings of Wind Turbines under Variable Working Conditions Based on the Fisher Score and Permutation Entropy," Energies, MDPI, vol. 12(16), pages 1-20, August.
    16. Andres Alonso-Robisco & Jose Carbo & Emily Kormanyos & Elena Triebskorn, 2025. "Houston, we have a problem: can satellite information bridge the climate-related data gap?," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Addressing climate change data needs: the central banks' contribution, volume 63, Bank for International Settlements.
    17. Piotr F. Borowski, 2022. "Management of Energy Enterprises in Zero-Emission Conditions: Bamboo as an Innovative Biomass for the Production of Green Energy by Power Plants," Energies, MDPI, vol. 15(5), pages 1-16, March.
    18. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
    19. Deng, Wanru & Liu, Liqin & Dai, Yuanjun & Wu, Haitao & Yuan, Zhiming, 2024. "A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques," Energy, Elsevier, vol. 304(C).
    20. Barbara Siuta-Tokarska & Sylwia Kruk & Paweł Krzemiński & Agnieszka Thier & Katarzyna Żmija, 2022. "Digitalisation of Enterprises in the Energy Sector: Drivers—Business Models—Prospective Directions of Changes," Energies, MDPI, vol. 15(23), pages 1-21, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2628-:d:1093827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.