IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7697-d946195.html
   My bibliography  Save this article

Physics-Informed Neural Network Solution of Point Kinetics Equations for a Nuclear Reactor Digital Twin

Author

Listed:
  • Konstantinos Prantikos

    (School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906, USA
    Nuclear Science and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA)

  • Lefteri H. Tsoukalas

    (School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906, USA)

  • Alexander Heifetz

    (Nuclear Science and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA)

Abstract

A digital twin (DT) for nuclear reactor monitoring can be implemented using either a differential equations-based physics model or a data-driven machine learning model. The challenge of a physics-model-based DT consists of achieving sufficient model fidelity to represent a complex experimental system, whereas the challenge of a data-driven DT consists of extensive training requirements and a potential lack of predictive ability. We investigate the performance of a hybrid approach, which is based on physics-informed neural networks (PINNs) that encode fundamental physical laws into the loss function of the neural network. We develop a PINN model to solve the point kinetic equations (PKEs), which are time-dependent, stiff, nonlinear, ordinary differential equations that constitute a nuclear reactor reduced-order model under the approximation of ignoring spatial dependence of the neutron flux. The PINN model solution of PKEs is developed to monitor the start-up transient of Purdue University Reactor Number One (PUR-1) using experimental parameters for the reactivity feedback schedule and the neutron source. The results demonstrate strong agreement between the PINN solution and finite difference numerical solution of PKEs. We investigate PINNs performance in both data interpolation and extrapolation. For the test cases considered, the extrapolation errors are comparable to those of interpolation predictions. Extrapolation accuracy decreases with increasing time interval.

Suggested Citation

  • Konstantinos Prantikos & Lefteri H. Tsoukalas & Alexander Heifetz, 2022. "Physics-Informed Neural Network Solution of Point Kinetics Equations for a Nuclear Reactor Digital Twin," Energies, MDPI, vol. 15(20), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7697-:d:946195
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7697/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7697/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Changhyun Kim & Minh-Chau Dinh & Hae-Jin Sung & Kyong-Hwan Kim & Jeong-Ho Choi & Lukas Graber & In-Keun Yu & Minwon Park, 2022. "Design, Implementation, and Evaluation of an Output Prediction Model of the 10 MW Floating Offshore Wind Turbine for a Digital Twin," Energies, MDPI, vol. 15(17), pages 1-16, August.
    2. Brendan Kochunas & Xun Huan, 2021. "Digital Twin Concepts with Uncertainty for Nuclear Power Applications," Energies, MDPI, vol. 14(14), pages 1-32, July.
    3. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harleen Kaur Sandhu & Saran Srikanth Bodda & Abhinav Gupta, 2023. "A Future with Machine Learning: Review of Condition Assessment of Structures and Mechanical Systems in Nuclear Facilities," Energies, MDPI, vol. 16(6), pages 1-23, March.
    2. Alexandra Akins & Derek Kultgen & Alexander Heifetz, 2023. "Anomaly Detection in Liquid Sodium Cold Trap Operation with Multisensory Data Fusion Using Long Short-Term Memory Autoencoder," Energies, MDPI, vol. 16(13), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
    2. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    3. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    4. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org.
    5. Ali Al-Aradi & Adolfo Correia & Danilo de Frietas Naiff & Gabriel Jardim & Yuri Saporito, 2019. "Extensions of the Deep Galerkin Method," Papers 1912.01455, arXiv.org, revised Apr 2022.
    6. Salah A. Faroughi & Ramin Soltanmohammadi & Pingki Datta & Seyed Kourosh Mahjour & Shirko Faroughi, 2023. "Physics-Informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media," Mathematics, MDPI, vol. 12(1), pages 1-23, December.
    7. Jiequn Han & Ruimeng Hu & Jihao Long, 2020. "Convergence of Deep Fictitious Play for Stochastic Differential Games," Papers 2008.05519, arXiv.org, revised Mar 2021.
    8. Dehghani, Hamidreza & Zilian, Andreas, 2021. "A hybrid MGA-MSGD ANN training approach for approximate solution of linear elliptic PDEs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 398-417.
    9. Jialiang Luo & Harry Zheng, 2023. "Deep Neural Network Solution for Finite State Mean Field Game with Error Estimation," Dynamic Games and Applications, Springer, vol. 13(3), pages 859-896, September.
    10. Olivier Bokanowski & Averil Prost & Xavier Warin, 2023. "Neural networks for first order HJB equations and application to front propagation with obstacle terms," Partial Differential Equations and Applications, Springer, vol. 4(5), pages 1-36, October.
    11. Ying Li & Longxiang Xu & Shihui Ying, 2022. "DWNN: Deep Wavelet Neural Network for Solving Partial Differential Equations," Mathematics, MDPI, vol. 10(12), pages 1-35, June.
    12. Li, Wei & Zhang, Ying & Huang, Dongmei & Rajic, Vesna, 2022. "Study on stationary probability density of a stochastic tumor-immune model with simulation by ANN algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    13. Li, Jiaheng & Li, Biao, 2022. "Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Laura Leal & Mathieu Lauri`ere & Charles-Albert Lehalle, 2020. "Learning a functional control for high-frequency finance," Papers 2006.09611, arXiv.org, revised Feb 2021.
    15. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
    16. José Alberto Rodrigues, 2024. "Using Physics-Informed Neural Networks (PINNs) for Tumor Cell Growth Modeling," Mathematics, MDPI, vol. 12(8), pages 1-9, April.
    17. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements," Applied Energy, Elsevier, vol. 288(C).
    18. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
    19. Hajimohammadi, Zeinab & Baharifard, Fatemeh & Ghodsi, Ali & Parand, Kourosh, 2021. "Fractional Chebyshev deep neural network (FCDNN) for solving differential models," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    20. Li, Yixin & Hu, Xianliang, 2022. "Artificial neural network approximations of Cauchy inverse problem for linear PDEs," Applied Mathematics and Computation, Elsevier, vol. 414(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7697-:d:946195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.