Study on stationary probability density of a stochastic tumor-immune model with simulation by ANN algorithm
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2022.112145
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Martin Hutzenthaler & Arnulf Jentzen & Thomas Kruse & Tuan Anh Nguyen, 2020. "A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations," Partial Differential Equations and Applications, Springer, vol. 1(2), pages 1-34, April.
- Han, Ping & Xu, Wei & Wang, Liang & Zhang, Hongxia & Ma, Shichao, 2020. "Most probable dynamics of the tumor growth model with immune surveillance under cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Sardanyés, Josep & Rodrigues, Carla & Januário, Cristina & Martins, Nuno & Gil-Gómez, Gabriel & Duarte, Jorge, 2015. "Activation of effector immune cells promotes tumor stochastic extinction: A homotopy analysis approach," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 484-495.
- Qian, Jiamin & Chen, Lincong, 2021. "Stochastic P-bifurcation analysis of a novel type of unilateral vibro-impact vibration system," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
- Xu, Pengfei & Jin, Yanfei, 2018. "Mean first-passage time in a delayed tristable system driven by correlated multiplicative and additive white noises," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 75-82.
- Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
- Jin, Yanfei & Wang, Heqiang, 2020. "Noise-induced dynamics in a Josephson junction driven by trichotomous noises," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
- Liang, G.Y. & Cao, L. & Wu, D.J., 2004. "Approximate Fokker–Planck equation of system driven by multiplicative colored noises with colored cross-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(3), pages 371-384.
- Sepehrian, Behnam & Radpoor, Marzieh Karimi, 2015. "Numerical solution of non-linear Fokker–Planck equation using finite differences method and the cubic spline functions," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 187-190.
- Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
- A. Fiasconaro & A. Ochab-Marcinek & B. Spagnolo & E. Gudowska-Nowak, 2008. "Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(3), pages 435-442, October.
- Yunying Zheng & Changpin Li & Zhengang Zhao, 2010. "A Fully Discrete Discontinuous Galerkin Method for Nonlinear Fractional Fokker-Planck Equation," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-26, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tan, Yiping & Cai, Yongli & Sun, Xiaodan & Wang, Kai & Yao, Ruoxia & Wang, Weiming & Peng, Zhihang, 2022. "A stochastic SICA model for HIV/AIDS transmission," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
- Guan, Yu & Li, Wei & Kozak, Drazan & Zhao, Junfeng, 2024. "Response and reliability analysis of a nonlinear VEH systems with FOPID controller by improved stochastic averaging method and LBFNN algorithm," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lukas Gonon, 2024. "Deep neural network expressivity for optimal stopping problems," Finance and Stochastics, Springer, vol. 28(3), pages 865-910, July.
- Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
- Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
- Donald Michael McFarland & Fei Ye & Chao Zong & Rui Zhu & Tao Han & Hangyu Fu & Lawrence A. Bergman & Huancai Lu, 2025. "Efficient Solution of Fokker–Planck Equations in Two Dimensions," Mathematics, MDPI, vol. 13(3), pages 1-20, January.
- Ariel Neufeld & Philipp Schmocker & Sizhou Wu, 2024. "Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs," Papers 2405.05192, arXiv.org, revised Jan 2025.
- Jentzen, Arnulf & Welti, Timo, 2023. "Overall error analysis for the training of deep neural networks via stochastic gradient descent with random initialisation," Applied Mathematics and Computation, Elsevier, vol. 455(C).
- Glau, Kathrin & Wunderlich, Linus, 2022. "The deep parametric PDE method and applications to option pricing," Applied Mathematics and Computation, Elsevier, vol. 432(C).
- Kristina O. F. Williams & Benjamin F. Akers, 2023. "Numerical Simulation of the Korteweg–de Vries Equation with Machine Learning," Mathematics, MDPI, vol. 11(13), pages 1-14, June.
- Jin, Yanfei & Wang, Heqiang, 2020. "Noise-induced dynamics in a Josephson junction driven by trichotomous noises," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
- William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
- Zhouzhou Gu & Mathieu Lauri`ere & Sebastian Merkel & Jonathan Payne, 2024. "Global Solutions to Master Equations for Continuous Time Heterogeneous Agent Macroeconomic Models," Papers 2406.13726, arXiv.org.
- Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
- Parand, K. & Aghaei, A.A. & Jani, M. & Ghodsi, A., 2021. "A new approach to the numerical solution of Fredholm integral equations using least squares-support vector regression," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 114-128.
- Li, Jiangcheng & Zhang, Chunmin & Liu, Jifa & Li, Zhen & Yang, Xuan, 2018. "An application of Mean Escape Time and metapopulation on forestry catastrophe insurance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 312-323.
- William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Papers 2102.09851, arXiv.org, revised Feb 2021.
- A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
- Hussain, Javed & Bano, Zarqa & Ahmed, Waleed & Shahid, Saba, 2022. "Analysis of stochastic dynamics of tumor with drug interventions," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
- Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019.
"Pricing Options and Computing Implied Volatilities using Neural Networks,"
Risks, MDPI, vol. 7(1), pages 1-22, February.
- Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing options and computing implied volatilities using neural networks," Papers 1901.08943, arXiv.org, revised Apr 2019.
- Bastien Baldacci & Joffrey Derchu & Iuliia Manziuk, 2020. "An approximate solution for options market-making in high dimension," Papers 2009.00907, arXiv.org.
More about this item
Keywords
Michaelis-Menten kinetics; Cross-correlated noise; Stochastic tumor-immune model; Artificial neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003551. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.