IDEAS home Printed from https://ideas.repec.org/a/spr/pardea/v4y2023i6d10.1007_s42985-023-00244-0.html
   My bibliography  Save this article

Deep learning approximations for non-local nonlinear PDEs with Neumann boundary conditions

Author

Listed:
  • Victor Boussange

    (Swiss Federal Research Institute for Forest, Snow and Landscape (WSL)
    ETH Zürich)

  • Sebastian Becker

    (ETH Zürich)

  • Arnulf Jentzen

    (The Chinese University of Hong Kong, Shenzhen
    University of Münster)

  • Benno Kuckuck

    (University of Münster)

  • Loïc Pellissier

    (Swiss Federal Research Institute for Forest, Snow and Landscape (WSL)
    ETH Zürich)

Abstract

Nonlinear partial differential equations (PDEs) are used to model dynamical processes in a large number of scientific fields, ranging from finance to biology. In many applications standard local models are not sufficient to accurately account for certain non-local phenomena such as, e.g., interactions at a distance. Non-local nonlinear PDE models can accurately capture these phenomena, but traditional numerical approximation methods are infeasible when the considered non-local PDE is high-dimensional. In this article we propose two numerical methods based on machine learning and on Picard iterations, respectively, to approximately solve non-local nonlinear PDEs. The proposed machine learning-based method is an extended variant of a deep learning-based splitting-up type approximation method previously introduced in the literature and utilizes neural networks to provide approximate solutions on a subset of the spatial domain of the solution. The Picard iterations-based method is an extended variant of the so-called full history recursive multilevel Picard approximation scheme previously introduced in the literature and provides an approximate solution for a single point of the domain. Both methods are mesh-free and allow non-local nonlinear PDEs with Neumann boundary conditions to be solved in high dimensions. In the two methods, the numerical difficulties arising due to the dimensionality of the PDEs are avoided by (i) using the correspondence between the expected trajectory of reflected stochastic processes and the solution of PDEs (given by the Feynman–Kac formula) and by (ii) using a plain vanilla Monte Carlo integration to handle the non-local term. We evaluate the performance of the two methods on five different PDEs arising in physics and biology. In all cases, the methods yield good results in up to 10 dimensions with short run times. Our work extends recently developed methods to overcome the curse of dimensionality in solving PDEs.

Suggested Citation

  • Victor Boussange & Sebastian Becker & Arnulf Jentzen & Benno Kuckuck & Loïc Pellissier, 2023. "Deep learning approximations for non-local nonlinear PDEs with Neumann boundary conditions," Partial Differential Equations and Applications, Springer, vol. 4(6), pages 1-51, December.
  • Handle: RePEc:spr:pardea:v:4:y:2023:i:6:d:10.1007_s42985-023-00244-0
    DOI: 10.1007/s42985-023-00244-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42985-023-00244-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42985-023-00244-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javier Castro, 2022. "Deep learning schemes for parabolic nonlocal integro-differential equations," Partial Differential Equations and Applications, Springer, vol. 3(6), pages 1-35, December.
    2. Jose Cruz & Daniel Sevcovic, 2020. "On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models," Papers 2003.03851, arXiv.org.
    3. Ali Al-Aradi & Adolfo Correia & Danilo de Frietas Naiff & Gabriel Jardim & Yuri Saporito, 2019. "Extensions of the Deep Galerkin Method," Papers 1912.01455, arXiv.org, revised Apr 2022.
    4. Frédéric Abergel & Rémi Tachet, 2010. "A nonlinear partial integro-differential equation from mathematical finance," Post-Print hal-00611962, HAL.
    5. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    6. Al-Aradi, Ali & Correia, Adolfo & Jardim, Gabriel & de Freitas Naiff, Danilo & Saporito, Yuri, 2022. "Extensions of the deep Galerkin method," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    7. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    8. Weinan E & Martin Hutzenthaler & Arnulf Jentzen & Thomas Kruse, 2021. "Multilevel Picard iterations for solving smooth semilinear parabolic heat equations," Partial Differential Equations and Applications, Springer, vol. 2(6), pages 1-31, December.
    9. Malay Banerjee & Sergei V. Petrovskii & Vitaly Volpert, 2021. "Nonlocal Reaction–Diffusion Models of Heterogeneous Wealth Distribution," Mathematics, MDPI, vol. 9(4), pages 1-18, February.
    10. Kristin Reikvam & Fred Espen Benth & Kenneth Hvistendahl Karlsen, 2001. "Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: A viscosity solution approach," Finance and Stochastics, Springer, vol. 5(3), pages 275-303.
    11. Lionel Roques & Olivier Bonnefon, 2016. "Modelling Population Dynamics in Realistic Landscapes with Linear Elements: A Mechanistic-Statistical Reaction-Diffusion Approach," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-20, March.
    12. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariel Neufeld & Philipp Schmocker & Sizhou Wu, 2024. "Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs," Papers 2405.05192, arXiv.org, revised Jan 2025.
    2. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
    3. Jose Cruz & Maria Grossinho & Daniel Sevcovic & Cyril Izuchukwu Udeani, 2022. "Linear and Nonlinear Partial Integro-Differential Equations arising from Finance," Papers 2207.11568, arXiv.org.
    4. Emmanuil H. Georgoulis & Antonis Papapantoleon & Costas Smaragdakis, 2024. "A deep implicit-explicit minimizing movement method for option pricing in jump-diffusion models," Papers 2401.06740, arXiv.org, revised Mar 2025.
    5. Daniel Sevcovic & Cyril Izuchukwu Udeani, 2021. "Multidimensional linear and nonlinear partial integro-differential equation in Bessel potential spaces with applications in option pricing," Papers 2106.10498, arXiv.org.
    6. Michael Barnett & William Brock & Lars Peter Hansen & Ruimeng Hu & Joseph Huang, 2023. "A Deep Learning Analysis of Climate Change, Innovation, and Uncertainty," Papers 2310.13200, arXiv.org.
    7. Daniel Ševčovič & Cyril Izuchukwu Udeani, 2021. "Multidimensional Linear and Nonlinear Partial Integro-Differential Equation in Bessel Potential Spaces with Applications in Option Pricing," Mathematics, MDPI, vol. 9(13), pages 1-12, June.
    8. Hainaut, Donatien & Casas, Alex, 2024. "Option pricing in the Heston model with Physics inspired neural networks," LIDAM Discussion Papers ISBA 2024002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    10. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    11. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    12. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    13. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    14. Ons Triki & Fathi Abid, 2025. "Financial decision making under optimal control and Markov switching double exponential jump process," Review of Derivatives Research, Springer, vol. 28(1), pages 1-34, April.
    15. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    16. Maekawa, Koichi & Lee, Sangyeol & Morimoto, Takayuki & Kawai, Ken-ichi, 2008. "Jump diffusion model with application to the Japanese stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 223-236.
    17. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    18. Chang-Yi Li & Son-Nan Chen & Shih-Kuei Lin, 2016. "Pricing derivatives with modeling CO emission allowance using a regime-switching jump diffusion model: with regime-switching risk premium," The European Journal of Finance, Taylor & Francis Journals, vol. 22(10), pages 887-908, August.
    19. Zhang, Hongyu & Guo, Xunxiang & Wang, Ke & Huang, Shoude, 2024. "The valuation of American options with the stochastic liquidity risk and jump risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    20. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:4:y:2023:i:6:d:10.1007_s42985-023-00244-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.