IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.13200.html
   My bibliography  Save this paper

A Deep Learning Analysis of Climate Change, Innovation, and Uncertainty

Author

Listed:
  • Michael Barnett
  • William Brock
  • Lars Peter Hansen
  • Ruimeng Hu
  • Joseph Huang

Abstract

We study the implications of model uncertainty in a climate-economics framework with three types of capital: "dirty" capital that produces carbon emissions when used for production, "clean" capital that generates no emissions but is initially less productive than dirty capital, and knowledge capital that increases with R\&D investment and leads to technological innovation in green sector productivity. To solve our high-dimensional, non-linear model framework we implement a neural-network-based global solution method. We show there are first-order impacts of model uncertainty on optimal decisions and social valuations in our integrated climate-economic-innovation framework. Accounting for interconnected uncertainty over climate dynamics, economic damages from climate change, and the arrival of a green technological change leads to substantial adjustments to investment in the different capital types in anticipation of technological change and the revelation of climate damage severity.

Suggested Citation

  • Michael Barnett & William Brock & Lars Peter Hansen & Ruimeng Hu & Joseph Huang, 2023. "A Deep Learning Analysis of Climate Change, Innovation, and Uncertainty," Papers 2310.13200, arXiv.org.
  • Handle: RePEc:arx:papers:2310.13200
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.13200
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicholas Bloom & John Van Reenen & Heidi Williams, 2019. "A toolkit of policies to promote innovation," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 10.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    4. Riccardo Colacito & Bridget Hoffmann & Toan Phan, 2019. "Temperature and Growth: A Panel Analysis of the United States," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(2-3), pages 313-368, March.
    5. Javier Castro, 2022. "Deep learning schemes for parabolic nonlocal integro-differential equations," Partial Differential Equations and Applications, Springer, vol. 3(6), pages 1-35, December.
    6. Tamma Carleton & Michael Greenstone, 2021. "Updating the United States Government's Social Cost of Carbon," Working Papers 2021-04, Becker Friedman Institute for Research In Economics.
    7. Ali Al-Aradi & Adolfo Correia & Danilo de Frietas Naiff & Gabriel Jardim & Yuri Saporito, 2019. "Extensions of the Deep Galerkin Method," Papers 1912.01455, arXiv.org, revised Apr 2022.
    8. William A. Brock & Leonard J. Mirman, 2001. "Optimal Economic Growth And Uncertainty: The Discounted Case," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 1, pages 3-37, Edward Elgar Publishing.
    9. Marlon Azinovic & Luca Gaegauf & Simon Scheidegger, 2022. "Deep Equilibrium Nets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1471-1525, November.
    10. Yongyang Cai & Thomas S. Lontzek, 2019. "The Social Cost of Carbon with Economic and Climate Risks," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2684-2734.
    11. Lars Peter Hansen & Thomas J Sargent, 2014. "A Quartet of Semigroups for Model Specification, Robustness, Prices of Risk, and Model Detection," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 4, pages 83-143, World Scientific Publishing Co. Pte. Ltd..
    12. Al-Aradi, Ali & Correia, Adolfo & Jardim, Gabriel & de Freitas Naiff, Danilo & Saporito, Yuri, 2022. "Extensions of the deep Galerkin method," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    13. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    14. Dietz, Simon & Venmans, Frank, 2019. "Cumulative carbon emissions and economic policy: In search of general principles," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 108-129.
    15. Michael Barnett & William Brock & Lars Peter Hansen & Harrison Hong, 2020. "Pricing Uncertainty Induced by Climate Change," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1024-1066.
    16. Cochrane, John H, 1991. "Production-Based Asset Pricing and the Link between Stock Returns and Economic Fluctuations," Journal of Finance, American Finance Association, vol. 46(1), pages 209-237, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Dietz & Bruno Lanz, 2019. "Growth and Adaptation to Climate Change in the Long Run," CESifo Working Paper Series 7986, CESifo.
    2. Yongyang Cai & William Brock & Anastasios Xepapadeas, 2023. "Climate Change Impact on Economic Growth: Regional Climate Policy under Cooperation and Noncooperation," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(3), pages 569-605.
    3. Michael Barnett & Greg Buchak & Constantine Yannelis, 2023. "Epidemic responses under uncertainty," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(2), pages 2208111120-, January.
    4. van der Ploeg, Frederick & Rezai, Armon, 2021. "Optimal carbon pricing in general equilibrium: Temperature caps and stranded assets in an extended annual DSGE model," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    5. Michael Barnett & William Brock & Lars Peter Hansen, 2022. "Climate Change Uncertainty Spillover in the Macroeconomy," NBER Macroeconomics Annual, University of Chicago Press, vol. 36(1), pages 253-320.
    6. Christoph Hambel & Holger Kraft & Rick van der Ploeg, 2020. "Asset Diversification versus Climate Action," CESifo Working Paper Series 8476, CESifo.
    7. Eric Jondeau & Grégory Levieuge & Jean-Guillaume Sahuc & Gauthier Vermandel, 2023. "Environmental Subsidies to Mitigate Net-Zero Transition Costs," Working papers 910, Banque de France.
    8. Drudi, Francesco & Moench, Emanuel & Holthausen, Cornelia & Weber, Pierre-François & Ferrucci, Gianluigi & Setzer, Ralph & Adao, Bernardino & Dées, Stéphane & Alogoskoufis, Spyros & Téllez, Mar Delgad, 2021. "Climate change and monetary policy in the euro area," Occasional Paper Series 271, European Central Bank.
    9. Campiglio, Emanuele & Dietz, Simon & Venmans, Frank, 2022. "Optimal climate policy as if the transition matters," LSE Research Online Documents on Economics 117609, London School of Economics and Political Science, LSE Library.
    10. Georgii Riabov & Aleh Tsyvinski, 2021. "Policy with stochastic hysteresis," Papers 2104.10225, arXiv.org.
    11. Gerlagh, Reyer, 2023. "Climate, technology, family size; on the crossroad between two ultimate externalities," European Economic Review, Elsevier, vol. 152(C).
    12. Eric Jondeau & Gregory Levieuge & Jean-Guillaume Sahuc & Gauthier Vermandel, 2022. "Environmental Subsidies to Mitigate Transition Risk," Swiss Finance Institute Research Paper Series 22-45, Swiss Finance Institute.
    13. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    14. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    15. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).
    16. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    17. Jussi Lintunen & Lauri Vilmi, 2021. "Optimal Emission Prices Over the Business Cycles," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(1), pages 135-167, September.
    18. Stern, Nicholas & Sivropoulos-Valero, Anna Valero, 2021. "Innovation, growth and the transition to net-zero emissions," LSE Research Online Documents on Economics 114385, London School of Economics and Political Science, LSE Library.
    19. Nicholas Stern & Anna Valero, 2021. "Innovation, growth and the transition to net-zero emissions," CEP Discussion Papers dp1773, Centre for Economic Performance, LSE.
    20. Emanuele Campiglio & Alessandro Spiganti & Anthony Wiskich, 2023. "Clean Innovation and Heterogeneous Financing Costs," CAMA Working Papers 2023-25, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University, revised Oct 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.13200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.