IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148124024005.html
   My bibliography  Save this article

Digital twin of wind turbine surface damage detection based on deep learning-aided drone inspection

Author

Listed:
  • Hu, Weifei
  • Fang, Jianhao
  • Zhang, Yaxuan
  • Liu, Zhenyu
  • Verma, Amrit Shankar
  • Liu, Hongwei
  • Cong, Feiyun
  • Tan, Jianrong

Abstract

Wind turbine (WT) surface damage detection based on deep learning-aided drone inspection is an important emerging technology. Traditional deep learning algorithms have the issues of low global search capability, low damage detection accuracy, and long inference time. This paper proposes a new real-time detection and semantic segmentation-you only look once (RDSS-YOLO) neural network (NN) for both real-time and accurate detection and semantic segmentation of WT surface damage. A damage size quantification method is further created to calculate the real size of WT surface damage using segmentation results. Moreover, a digital twin (DT) of WT surface damage detection based on the drone inspection aided by the proposed deep learning methods is developed, which can ultimately realize real-time surface damage detection for both standstill and rotating WTs. The proposed RDSS-YOLO NN is tested on an augmented drone inspection dataset and obtains mean average percentage, precision, recall, and mean intersection over union of 95.7 %, 93.9 %, 96.8 %, and 81.5 %, respectively, which are superior to those obtained by some state-of-the-art surface damage detection NNs. The proposed damage size quantification method is tested on another dataset generating an average relative error of 7.24 %, 13.06 %, and 9.44 % for WT blade crack, leading edge erosion, and paint peeling, respectively. The developed DT has been successfully applied in three different wind farms and achieved the real-time detection and semantic segmentation of WT surface features.

Suggested Citation

  • Hu, Weifei & Fang, Jianhao & Zhang, Yaxuan & Liu, Zhenyu & Verma, Amrit Shankar & Liu, Hongwei & Cong, Feiyun & Tan, Jianrong, 2025. "Digital twin of wind turbine surface damage detection based on deep learning-aided drone inspection," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124024005
    DOI: 10.1016/j.renene.2024.122332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124024005
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yonggang & Tu, Le & Liu, Hongwei & Li, Wei, 2016. "Fault analysis of wind turbines in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 482-490.
    2. Hacıefendioğlu, Kemal & Başağa, Hasan Basri & Yavuz, Zafer & Karimi, Mohammad Tordi, 2022. "Intelligent ice detection on wind turbine blades using semantic segmentation and class activation map approaches based on deep learning method," Renewable Energy, Elsevier, vol. 182(C), pages 1-16.
    3. Liu, Y. & Hajj, M. & Bao, Y., 2022. "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Changhyun Kim & Minh-Chau Dinh & Hae-Jin Sung & Kyong-Hwan Kim & Jeong-Ho Choi & Lukas Graber & In-Keun Yu & Minwon Park, 2022. "Design, Implementation, and Evaluation of an Output Prediction Model of the 10 MW Floating Offshore Wind Turbine for a Digital Twin," Energies, MDPI, vol. 15(17), pages 1-16, August.
    5. ASM Shihavuddin & Xiao Chen & Vladimir Fedorov & Anders Nymark Christensen & Nicolai Andre Brogaard Riis & Kim Branner & Anders Bjorholm Dahl & Rasmus Reinhold Paulsen, 2019. "Wind Turbine Surface Damage Detection by Deep Learning Aided Drone Inspection Analysis," Energies, MDPI, vol. 12(4), pages 1-15, February.
    6. Guo, Jihong & Liu, Chao & Cao, Jinfeng & Jiang, Dongxiang, 2021. "Damage identification of wind turbine blades with deep convolutional neural networks," Renewable Energy, Elsevier, vol. 174(C), pages 122-133.
    7. Dollinger, Christoph & Balaresque, Nicholas & Gaudern, Nicholas & Gleichauf, Daniel & Sorg, Michael & Fischer, Andreas, 2019. "IR thermographic flow visualization for the quantification of boundary layer flow disturbances due to the leading edge condition," Renewable Energy, Elsevier, vol. 138(C), pages 709-721.
    8. Kaewniam, Panida & Cao, Maosen & Alkayem, Nizar Faisal & Li, Dayang & Manoach, Emil, 2022. "Recent advances in damage detection of wind turbine blades: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.
    10. Fang, Jianhao & Hu, Weifei & Liu, Zhenyu & Chen, Weiyi & Tan, Jianrong & Jiang, Zhiyu & Verma, Amrit Shankar, 2022. "Wind turbine rotor speed design optimization considering rain erosion based on deep reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    12. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.
    2. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    3. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    4. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    5. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    6. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Moynihan, Bridget & Moaveni, Babak & Liberatore, Sauro & Hines, Eric, 2022. "Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification," Renewable Energy, Elsevier, vol. 184(C), pages 662-676.
    8. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    9. Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.
    10. Mikkel Schou Nielsen & Ivan Nikolov & Emil Krog Kruse & Jørgen Garnæs & Claus Brøndgaard Madsen, 2020. "High-Resolution Structure-from-Motion for Quantitative Measurement of Leading-Edge Roughness," Energies, MDPI, vol. 13(15), pages 1-17, July.
    11. Li, Jianlan & Zhang, Xuran & Zhou, Xing & Lu, Luyi, 2019. "Reliability assessment of wind turbine bearing based on the degradation-Hidden-Markov model," Renewable Energy, Elsevier, vol. 132(C), pages 1076-1087.
    12. Zengyi Zhang & Zhenru Shu, 2024. "Unmanned Aerial Vehicle (UAV)-Assisted Damage Detection of Wind Turbine Blades: A Review," Energies, MDPI, vol. 17(15), pages 1-31, July.
    13. Romero, Antonio & Soua, Slim & Gan, Tat-Hean & Wang, Bin, 2018. "Condition monitoring of a wind turbine drive train based on its power dependant vibrations," Renewable Energy, Elsevier, vol. 123(C), pages 817-827.
    14. Xiaowen Song & Zhitai Xing & Yan Jia & Xiaojuan Song & Chang Cai & Yinan Zhang & Zekun Wang & Jicai Guo & Qingan Li, 2022. "Review on the Damage and Fault Diagnosis of Wind Turbine Blades in the Germination Stage," Energies, MDPI, vol. 15(20), pages 1-17, October.
    15. Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
    16. Hsu-Hao Yang & Mei-Ling Huang & Shih-Wei Yang, 2015. "Integrating Auto-Associative Neural Networks with Hotelling T 2 Control Charts for Wind Turbine Fault Detection," Energies, MDPI, vol. 8(10), pages 1-16, October.
    17. Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
    18. Abdul Ghani Olabi & Tabbi Wilberforce & Khaled Elsaid & Enas Taha Sayed & Tareq Salameh & Mohammad Ali Abdelkareem & Ahmad Baroutaji, 2021. "A Review on Failure Modes of Wind Turbine Components," Energies, MDPI, vol. 14(17), pages 1-44, August.
    19. Andrius Kulsinskas & Petar Durdevic & Daniel Ortiz-Arroyo, 2021. "Internal Wind Turbine Blade Inspections Using UAVs: Analysis and Design Issues," Energies, MDPI, vol. 14(2), pages 1-19, January.
    20. Yuan Yao & Guozhong Wang & Jinhui Fan, 2023. "WT-YOLOX: An Efficient Detection Algorithm for Wind Turbine Blade Damage Based on YOLOX," Energies, MDPI, vol. 16(9), pages 1-15, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124024005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.