IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v132y2019icp1076-1087.html
   My bibliography  Save this article

Reliability assessment of wind turbine bearing based on the degradation-Hidden-Markov model

Author

Listed:
  • Li, Jianlan
  • Zhang, Xuran
  • Zhou, Xing
  • Lu, Luyi

Abstract

Wind power develops very quickly in last decade to overcome the energy crisis and environment crisis. Mechanical components of wind turbines usually have characteristic with performance degradation that results in the declining reliability over time. Generally, the reliability data of equipment come from statistical analysis based on extensive experiments and operations. However, wind turbines, as expensive large-scale equipment with long lifetime, face with the dilemma of lacking enough statistical data, and leads to insufficiency reliability data for field operations and thus results in frequent wind turbine faults. A new reliability assessment method based on Hidden-Markov model considering performance degradation, called degradation-Hidden-Markov model, is proposed in this paper. The performance degradation rule of wind turbine component is derived using the monitoring data of performance parameters. Hidden-Markov model is improved by the performance degradation rule of the component to create a new time-correlated state transition probability matrix with degradation feature. The reliability curve is obtained using the state probabilities of the degradation-Hidden-Markov model. Thus, the presented method realizes the reliability assessment of component based on small sample data of wind turbine. Finally, the reliability assessment of a gearbox bearing of a 1.5 MW wind turbine by the degradation-Hidden-Markov model proves its validity.

Suggested Citation

  • Li, Jianlan & Zhang, Xuran & Zhou, Xing & Lu, Luyi, 2019. "Reliability assessment of wind turbine bearing based on the degradation-Hidden-Markov model," Renewable Energy, Elsevier, vol. 132(C), pages 1076-1087.
  • Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:1076-1087
    DOI: 10.1016/j.renene.2018.08.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118309984
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.08.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yonggang & Tu, Le & Liu, Hongwei & Li, Wei, 2016. "Fault analysis of wind turbines in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 482-490.
    2. Kim, Dong Hyawn & Lee, Sang Geun, 2015. "Reliability analysis of offshore wind turbine support structures under extreme ocean environmental loads," Renewable Energy, Elsevier, vol. 79(C), pages 161-166.
    3. Acuña, Luceny Guzmán & Padilla, Ricardo Vasquez & Mercado, Alcides Santander, 2017. "Measuring reliability of hybrid photovoltaic-wind energy systems: A new indicator," Renewable Energy, Elsevier, vol. 106(C), pages 68-77.
    4. Pinar Pérez, Jesús María & García Márquez, Fausto Pedro & Tobias, Andrew & Papaelias, Mayorkinos, 2013. "Wind turbine reliability analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 463-472.
    5. Guo, Haitao & Watson, Simon & Tavner, Peter & Xiang, Jiangping, 2009. "Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1057-1063.
    6. Romero, Antonio & Soua, Slim & Gan, Tat-Hean & Wang, Bin, 2018. "Condition monitoring of a wind turbine drive train based on its power dependant vibrations," Renewable Energy, Elsevier, vol. 123(C), pages 817-827.
    7. Tian, Zhigang & Jin, Tongdan & Wu, Bairong & Ding, Fangfang, 2011. "Condition based maintenance optimization for wind power generation systems under continuous monitoring," Renewable Energy, Elsevier, vol. 36(5), pages 1502-1509.
    8. Toft, Henrik Stensgaard & Svenningsen, Lasse & Sørensen, John Dalsgaard & Moser, Wolfgang & Thøgersen, Morten Lybech, 2016. "Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads," Renewable Energy, Elsevier, vol. 90(C), pages 352-361.
    9. Alhmoud, Lina & Wang, Bingsen, 2018. "A review of the state-of-the-art in wind-energy reliability analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1643-1651.
    10. Li, Y.F. & Valla, S. & Zio, E., 2015. "Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation," Renewable Energy, Elsevier, vol. 83(C), pages 222-233.
    11. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    12. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinwen Sun & Akash Deep & Shiyu Zhou & Dharmaraj Veeramani, 2023. "Industrial system working condition identification using operation-adjusted hidden Markov model," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2611-2624, August.
    2. Liu, Jia & Cao, Sunliang & Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2021. "Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 281(C).
    3. Yixiao Zhao & Yihai He & Fengdi Liu & Xiao Han & Anqi Zhang & Di Zhou & Yao Li, 2020. "Operational risk modeling based on operational data fusion for multi-state manufacturing systems," Journal of Risk and Reliability, , vol. 234(2), pages 407-421, April.
    4. Yaping Li & Enrico Zio & Ershun Pan, 2021. "An MEWMA-based segmental multivariate hidden Markov model for degradation assessment and prediction," Journal of Risk and Reliability, , vol. 235(5), pages 831-844, October.
    5. Arpad Gellert & Stefan-Alexandru Precup & Alexandru Matei & Bogdan-Constantin Pirvu & Constantin-Bala Zamfirescu, 2022. "Real-Time Assembly Support System with Hidden Markov Model and Hybrid Extensions," Mathematics, MDPI, vol. 10(15), pages 1-21, August.
    6. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
    7. Tobi Elusakin & Mahmood Shafiee & Tosin Adedipe & Fateme Dinmohammadi, 2021. "A Stochastic Petri Net Model for O&M Planning of Floating Offshore Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-18, February.
    8. Eryilmaz, Serkan & Devrim, Yilser, 2019. "Theoretical derivation of wind plant power distribution with the consideration of wind turbine reliability," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 192-197.
    9. Zhang, Jinchun & Xv, Feiyu & Hou, Jinxiu, 2023. "Degradation recognition and residual life analysis of gasifier firebrick in service using Hidden Semi-Markov Model," Energy, Elsevier, vol. 264(C).
    10. Liu, Jia & Chen, Xi & Yang, Hongxing & Shan, Kui, 2021. "Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    2. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    3. de Azevedo, Henrique Dias Machado & Araújo, Alex Maurício & Bouchonneau, Nadège, 2016. "A review of wind turbine bearing condition monitoring: State of the art and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 368-379.
    4. Eryilmaz, Serkan & Devrim, Yilser, 2019. "Theoretical derivation of wind plant power distribution with the consideration of wind turbine reliability," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 192-197.
    5. Kang, Jichuan & Sun, Liping & Guedes Soares, C., 2019. "Fault Tree Analysis of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 133(C), pages 1455-1467.
    6. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    7. Abdul Ghani Olabi & Tabbi Wilberforce & Khaled Elsaid & Enas Taha Sayed & Tareq Salameh & Mohammad Ali Abdelkareem & Ahmad Baroutaji, 2021. "A Review on Failure Modes of Wind Turbine Components," Energies, MDPI, vol. 14(17), pages 1-44, August.
    8. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    9. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.
    10. Eryilmaz, Serkan & Bulanık, İrem & Devrim, Yilser, 2021. "Reliability based modeling of hybrid solar/wind power system for long term performance assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Abdollahzadeh, Hadi & Atashgar, Karim & Abbasi, Morteza, 2016. "Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups," Renewable Energy, Elsevier, vol. 88(C), pages 247-261.
    12. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    13. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    14. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
    15. Pinciroli, Luca & Baraldi, Piero & Ballabio, Guido & Compare, Michele & Zio, Enrico, 2022. "Optimization of the Operation and Maintenance of renewable energy systems by Deep Reinforcement Learning," Renewable Energy, Elsevier, vol. 183(C), pages 752-763.
    16. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    17. Yingying Zhao & Dongsheng Li & Ao Dong & Dahai Kang & Qin Lv & Li Shang, 2017. "Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data," Energies, MDPI, vol. 10(8), pages 1-17, August.
    18. Kandukuri, Surya Teja & Klausen, Andreas & Karimi, Hamid Reza & Robbersmyr, Kjell Gunnar, 2016. "A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 697-708.
    19. Bakir, I. & Yildirim, M. & Ursavas, E., 2021. "An integrated optimization framework for multi-component predictive analytics in wind farm operations & maintenance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Colak, Ilhami & Fulli, Gianluca & Bayhan, Sertac & Chondrogiannis, Stamatios & Demirbas, Sevki, 2015. "Critical aspects of wind energy systems in smart grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 155-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:132:y:2019:i:c:p:1076-1087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.