IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p746-d138017.html
   My bibliography  Save this article

Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data

Author

Listed:
  • Miguel A. Rodríguez-López

    (Departamento de Ingeniería de Explotación (INGEX), Iberdrola Ingeniería y Construcción, S.A.U., Avda. de Manoteras, 20, Edif. D, 2ª Planta, 28050 Madrid, Spain)

  • Luis M. López-González

    (TENECO Research Group, Department of Mechanical Engineering, University of La Rioja, Calle San José de Calasanz, 31, 26004 Logroño, La Rioja, Spain)

  • Luis M. López-Ochoa

    (TENECO Research Group, Department of Mechanical Engineering, University of La Rioja, Calle San José de Calasanz, 31, 26004 Logroño, La Rioja, Spain)

  • Jesús Las-Heras-Casas

    (TENECO Research Group, Department of Mechanical Engineering, University of La Rioja, Calle San José de Calasanz, 31, 26004 Logroño, La Rioja, Spain)

Abstract

This article offers reasons to defend the use of generic behavior models as opposed to specific models in applications to determine component degradation. The term generic models refers to models based on operating data from various units, whereas specific models are calculated using operating data taken from a single unit. Moreover, generic models, used in combination with a status indicator, show excellent capacity for detecting anomalies in the equipment and for evaluating the effectiveness of the maintenance actions, resulting in lower development and maintenance costs for the operating firm. Artificial neural networks and moving means were used to calculate the degradation indicators, based on the remainders in the model. The models were developed from operating data from fourteen wind turbines monitored over several years, and applied to the detection of faults in the bearings on the non-drive end of the generator. The use of generic models may not be recommendable for detecting faults in all cases, and the suitability will depend greatly on the context of the methodology developed to detect each type of fault, according to the element causing the fault and the fault mode, since each methodology requires a greater or lesser degree of precision in the model.

Suggested Citation

  • Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:746-:d:138017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/746/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/746/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian, Zhigang & Jin, Tongdan & Wu, Bairong & Ding, Fangfang, 2011. "Condition based maintenance optimization for wind power generation systems under continuous monitoring," Renewable Energy, Elsevier, vol. 36(5), pages 1502-1509.
    2. Wang, Wenbin & Hussin, B. & Jefferis, Tim, 2012. "A case study of condition based maintenance modelling based upon the oil analysis data of marine diesel engines using stochastic filtering," International Journal of Production Economics, Elsevier, vol. 136(1), pages 84-92.
    3. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    4. Rostek, Kornel & Morytko, Łukasz & Jankowska, Anna, 2015. "Early detection and prediction of leaks in fluidized-bed boilers using artificial neural networks," Energy, Elsevier, vol. 89(C), pages 914-923.
    5. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    6. Kandukuri, Surya Teja & Klausen, Andreas & Karimi, Hamid Reza & Robbersmyr, Kjell Gunnar, 2016. "A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 697-708.
    7. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    8. López González, Luis Marı́a & Sala Lizarraga, José Marı́a & Aranguren, Vı́ctor De la Peña & Tabarés, José Luis Mı́guez, 2000. "Proposal for the use of renewable energy in the La Rioja autonomous community (LRAC) (Spain)," Renewable Energy, Elsevier, vol. 20(3), pages 289-304.
    9. Nayeripour, Majid & Mahdi Mansouri, M., 2015. "An advanced analytical calculation and modeling of the electrical and mechanical harmonics behavior of Doubly Fed Induction Generator in wind turbine," Renewable Energy, Elsevier, vol. 81(C), pages 275-285.
    10. Yaïci, Wahiba & Entchev, Evgueniy, 2016. "Adaptive Neuro-Fuzzy Inference System modelling for performance prediction of solar thermal energy system," Renewable Energy, Elsevier, vol. 86(C), pages 302-315.
    11. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
    12. González-Bustamante, J.A. & Sala, J.M. & López-González, L.M. & Míguez, J.L. & Flores, I., 2007. "Modelling and dynamic simulation of processes with ‘MATLAB’. An application of a natural gas installation in a power plant," Energy, Elsevier, vol. 32(7), pages 1271-1282.
    13. Míguez, J.L. & López-González, L.M. & Sala, J.M. & Porteiro, J. & Granada, E. & Morán, J.C. & Juárez, M.C., 2006. "Review of compliance with EU-2010 targets on renewable energy in Galicia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 225-247, June.
    14. Badihi, Hamed & Zhang, Youmin & Hong, Henry, 2017. "Fault-tolerant cooperative control in an offshore wind farm using model-free and model-based fault detection and diagnosis approaches," Applied Energy, Elsevier, vol. 201(C), pages 284-307.
    15. Kusiak, Andrew & Verma, Anoop, 2012. "Analyzing bearing faults in wind turbines: A data-mining approach," Renewable Energy, Elsevier, vol. 48(C), pages 110-116.
    16. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2010. "Power optimization of wind turbines with data mining and evolutionary computation," Renewable Energy, Elsevier, vol. 35(3), pages 695-702.
    17. Huang, Chao & Bensoussan, Alain & Edesess, Michael & Tsui, Kwok L., 2016. "Improvement in artificial neural network-based estimation of grid connected photovoltaic power output," Renewable Energy, Elsevier, vol. 97(C), pages 838-848.
    18. Olivencia Polo, Fernando A. & Ferrero Bermejo, Jesús & Gómez Fernández, Juan F. & Crespo Márquez, Adolfo, 2015. "Failure mode prediction and energy forecasting of PV plants to assist dynamic maintenance tasks by ANN based models," Renewable Energy, Elsevier, vol. 81(C), pages 227-238.
    19. Cross, Philip & Ma, Xiandong, 2014. "Nonlinear system identification for model-based condition monitoring of wind turbines," Renewable Energy, Elsevier, vol. 71(C), pages 166-175.
    20. Hossain, Md Maruf & Ali, Mohd. Hasan, 2015. "Future research directions for the wind turbine generator system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 481-489.
    21. Urs Giger & Patrick Kühne & Horst Schulte, 2017. "Fault Tolerant and Optimal Control of Wind Turbines with Distributed High-Speed Generators," Energies, MDPI, vol. 10(2), pages 1-13, January.
    22. Yang, Wenxian & Court, Richard & Jiang, Jiesheng, 2013. "Wind turbine condition monitoring by the approach of SCADA data analysis," Renewable Energy, Elsevier, vol. 53(C), pages 365-376.
    23. Li, Y.P. & Huang, G.H. & Li, M.W., 2014. "An integrated optimization modeling approach for planning emission trading and clean-energy development under uncertainty," Renewable Energy, Elsevier, vol. 62(C), pages 31-46.
    24. Anamika, & Peesapati, Rajagopal & Kumar, Niranjan, 2016. "Estimation of GSR to ascertain solar electricity cost in context of deregulated electricity markets," Renewable Energy, Elsevier, vol. 87(P1), pages 353-363.
    25. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    26. Cadini, Francesco & Agliardi, Gian Luca & Zio, Enrico, 2017. "A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions," Applied Energy, Elsevier, vol. 185(P1), pages 267-279.
    27. Mo, Hua-Dong & Li, Yan-Fu & Zio, Enrico, 2016. "A system-of-systems framework for the reliability analysis of distributed generation systems accounting for the impact of degraded communication networks," Applied Energy, Elsevier, vol. 183(C), pages 805-822.
    28. Rodríguez-López, Miguel A. & López-González, Luis M. & López-Ochoa, Luis M. & Las-Heras-Casas, Jesús, 2016. "Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA," Renewable Energy, Elsevier, vol. 99(C), pages 224-236.
    29. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    30. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    31. Entezami, M. & Hillmansen, S. & Weston, P. & Papaelias, M.Ph., 2012. "Fault detection and diagnosis within a wind turbine mechanical braking system using condition monitoring," Renewable Energy, Elsevier, vol. 47(C), pages 175-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jingjing & Zhao, Xian & Guo, Xiaoxin, 2019. "Optimizing wind turbine's maintenance policies under performance-based contract," Renewable Energy, Elsevier, vol. 135(C), pages 626-634.
    2. Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-López, Miguel A. & López-González, Luis M. & López-Ochoa, Luis M. & Las-Heras-Casas, Jesús, 2016. "Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA," Renewable Energy, Elsevier, vol. 99(C), pages 224-236.
    2. Angel Gil & Miguel A. Sanz-Bobi & Miguel A. Rodríguez-López, 2018. "Behavior Anomaly Indicators Based on Reference Patterns—Application to the Gearbox and Electrical Generator of a Wind Turbine," Energies, MDPI, vol. 11(1), pages 1-15, January.
    3. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    4. de Azevedo, Henrique Dias Machado & Araújo, Alex Maurício & Bouchonneau, Nadège, 2016. "A review of wind turbine bearing condition monitoring: State of the art and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 368-379.
    5. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    6. Peng Sun & Jian Li & Junsheng Chen & Xiao Lei, 2016. "A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
    7. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    8. Li, Yanting & Liu, Shujun & Shu, Lianjie, 2019. "Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data," Renewable Energy, Elsevier, vol. 134(C), pages 357-366.
    9. Chen, Junsheng & Li, Jian & Chen, Weigen & Wang, Youyuan & Jiang, Tianyan, 2020. "Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders," Renewable Energy, Elsevier, vol. 147(P1), pages 1469-1480.
    10. Masoud Asgarpour & John Dalsgaard Sørensen, 2018. "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-17, January.
    11. Wang, Yifei & Ma, Xiandong & Joyce, Malcolm J., 2016. "Reducing sensor complexity for monitoring wind turbine performance using principal component analysis," Renewable Energy, Elsevier, vol. 97(C), pages 444-456.
    12. Yuri Merizalde & Luis Hernández-Callejo & Oscar Duque-Perez & Víctor Alonso-Gómez, 2019. "Maintenance Models Applied to Wind Turbines. A Comprehensive Overview," Energies, MDPI, vol. 12(2), pages 1-41, January.
    13. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    14. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    15. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    16. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    17. Miguel Á. Rodríguez-López & Emilio Cerdá & Pablo del Rio, 2020. "Modeling Wind-Turbine Power Curves: Effects of Environmental Temperature on Wind Energy Generation," Energies, MDPI, vol. 13(18), pages 1-21, September.
    18. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    19. Seyed Abolfazl Mortazavizadeh & Reza Yazdanpanah & David Campos Gaona & Olimpo Anaya-Lara, 2023. "Fault Diagnosis and Condition Monitoring in Wave Energy Converters: A Review," Energies, MDPI, vol. 16(19), pages 1-16, September.
    20. Yingying Zhao & Dongsheng Li & Ao Dong & Dahai Kang & Qin Lv & Li Shang, 2017. "Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data," Energies, MDPI, vol. 10(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:746-:d:138017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.