IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v48y2012icp110-116.html
   My bibliography  Save this article

Analyzing bearing faults in wind turbines: A data-mining approach

Author

Listed:
  • Kusiak, Andrew
  • Verma, Anoop

Abstract

Bearings are an essential part of turbine generators and gearboxes. Dynamic and unpredictable stress causes the bearings to wear prematurely, leading to increased turbine maintenance costs, and could lead to sudden, expensive turbine breakdowns. Over temperature impacts the performance of turbine bearings. In this paper, data mining is applied to identify bearing faults in wind turbines. Historical wind turbine data are analyzed to develop prediction models for bearing faults. Such models are generated by neural network algorithms, using data from 24 turbines collected over a period of four months. Models predicting normal behavior are constructed. The performance of the models is validated on different wind turbines with over 97% accuracy. The model error residuals are analyzed using moving average windows to predict the occurrence of over-temperature events. Five over-temperature events are analyzed. The research reported in this paper has led to the prediction of faults 1.5 h before their occurrence.

Suggested Citation

  • Kusiak, Andrew & Verma, Anoop, 2012. "Analyzing bearing faults in wind turbines: A data-mining approach," Renewable Energy, Elsevier, vol. 48(C), pages 110-116.
  • Handle: RePEc:eee:renene:v:48:y:2012:i:c:p:110-116
    DOI: 10.1016/j.renene.2012.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112002613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:48:y:2012:i:c:p:110-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.